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Growth rates have complex sources and may determine adult body size in organisms with indeterminate growth. 
Thus, the interpretation of interpopulation differences in body size along geographical gradients requires the exami-
nation of growth and to distinguish between the proximal and ultimate causes of it. Several studies support a link 
between growth rates and habitat production via climatic effects. Environmental constraints, such as food abundance, 
may be correlated with climatic conditions and could, in turn, limit growth rate because of limited energy availability. 
We performed a reciprocal transplant experiment to disentangle the effects of environmental and genetic factors on 
body size interpopulational divergence in the lizard Podarcis guadarramae along a 500-m elevation gradient with 
contrasting environmental conditions. Our results showed that the growing environment determined growth rates of 
juvenile lizards, independently of the population of origin. Hatchlings experiencing the high-altitude growing envi-
ronment, which had colder and more humid climatic conditions, grew faster than those growing in the low-altitude 
environment. However, mother’s site of origin did not affect growth. We conclude that the drivers of growth rate dif-
ferences in P. guadarramae lizards are probably related to between-sites differences in water and food availability.
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INTRODUCTION

Life histories are a crucial part of the ecology of species 
and play a central role in evolutionary theory (Stearns, 
2000; Du et al., 2013). Studies of intraspecific variation 
in life histories are typically concerned with identify-
ing environmental sources of variation that are corre-
lated with the observed variation (Tinkle & Ballinger, 
1972; Ballinger, 1977; Jones, Ballinger & Porter, 1987; 
Ford & Siegel, 1989). In some cases, variation in life-
history traits is environmentally induced by extrinsic 
factors (phenotypic plasticity) (Losos et al., 2000; Via & 
Lande, 1985), in others it is mediated by intrinsic dif-
ferences linked to geographically variable conditions 
(local adaptation) (Travis, 1994) or a combination of 
both (Sá-sousa Sears & Angilletta, 2003). Hence, 
the understanding of the ecological and evolution-
ary significance of intraspecific geographic variation 
in life-history traits requires teasing apart genetic 
and environmental sources of variation (Ferguson & 

Brockman, 1980; Ballinger, 1983; Berven & Gill, 1983; 
Jones et al., 1987; Ford & Siegel, 1989; Sá-sousa Sears 
& Angilletta, 2003).

Geographical variation of body size along environ-
mental gradients has been widely studied (Aragón & 
Fitze, 2014), mostly from a Bergmann’s rule perspec-
tive (Bergmann, 1847; Rensch, 1938). Nonetheless, 
there are alternative explanations such as the temper-
ature-size rule, which predicts that larger body sizes 
are associated with colder climates, since a negative 
relationship between ontogenetic temperature and 
size at maturity has been found in many ectotherms 
(Atkinson, 1994) or the starvation resistance hypoth-
esis, which states that, as energy stores increase with 
size faster than metabolic rate, larger body sizes are 
adaptive to long inactivity periods in more seasonal 
environments (Lindsey, 1996; Ashton, 2001). However, 
most research has focused on describing trends rather 
than searching for plausible explanations behind the 
observations (Watts, Mitchell & Salewski, 2010). In 
ectotherms, the multiple hypotheses proposed and the 
lack of a general pattern shows that it is unlikely that 
a single mechanism for geographic variation in body *Corresponding author. E-mail: jortega@mncn.csic.es
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size exists for this group (Ficetola et al., 2010). In ecto-
thermic vertebrates, a large body size may result from 
a faster growth rate and/or a longer duration of growth 
(Angilletta et al., 2004). This is the consequence of a 
continuous growth beyond sexual maturity, so all else 
being equal and according to this formula: body size = 
f (initial size + growth rate × age), faster growth rates 
would lead to larger body sizes at maturity (Liao & 
Lu, 2012). Hence, growth rate defines the relationship 
between body size and age, and therefore it is clearly 
an important factor to consider in life-history theory 
(Arendt, 1997). Geographic variation in growth has 
complex sources, depending on the interplay among 
resource availability and the efficiency with which 
an organism can assimilate energy (Congdon, 1989; 
Ferguson & Talent, 1993; Arendt, 1997). For example, 
Niewiarowski & Roosenburg (1993) found a genotype 
× environment interaction in Sceloporus undulatus 
lizards in which the thermal environment and pop-
ulation of origin shaped lizard growth rates. Thus, 
the interpretation of interpopulation differences in 
growth rates along geographical gradients requires 
distinguishing between the proximal (environmental) 
and ultimate (genetic) causes of growth (Iraeta et al., 
2006). Environmental factors, such as temperature, 
precipitation and food availability, play a key role 
in ectotherm growth rates (Sinervo & Adolph, 1989; 
Niewiarowski, 1995; Andrews, Mathies & Warner, 
2000); however, temperature and precipitation (a cue 
of food availability) tend to be negatively correlated 
in temperate regions (Iraeta et al., 2006). This implies 
that the interaction between resource levels and bio-
physical constraints may greatly influence interpopu-
lation differences in life histories (Grant & Dunham, 
1990). In this context, Mediterranean areas offer an 
excellent opportunity to examine the effects of envi-
ronmental variations in temperature, precipitation 
and food availability on lizard growth rates (Iraeta 
et al., 2006). Mediterranean climates are defined by 
a cold winter, the coincidence of low summer rainfall 
and maximum temperatures with the consequent 
period of drought of at least 2 months, and a highly 
interannual variability in precipitation, which alto-
gether accentuates the severity of these climates for 
vegetation and associated arthropod faunas (Nahal, 
1981). Most of the studies of ectotherms assume 
that environmental conditions, such as temperature 
and humidity, and other factors that determine the 
activity period, should be more restrictive as altitude 
increases so that the time available for hatchling 
growth prior to winter is more limited than at lower 
altitude (Olsson & Shine, 1997; Sears, 2005). However, 
this assumption does not hold for Mediterranean cli-
mates where drought becomes less restrictive as alti-
tude increases due to milder temperatures and higher 

precipitation, which increases productivity (Nahal, 
1981; Iraeta, Salvador & Díaz, 2012).

Several studies support a link between growth rates 
and productivity via climate effects (Bauwens, 1985; 
Bauwens & Verheyen, 1987; Heulin, 1985; Aragón & 
Fitze, 2014). So, environmental constraints such as 
thermoregulation opportunities or food abundance 
may be correlated with humidity and could, in turn, 
limit growth rate because of limited energy avail-
ability (Ballinger, 1977; Dunham, 1978; Ballinger & 
Congdon, 1980; Stamps & Tanaka, 1981). Hence, the 
main problem for ectotherms in Mediterranean low-
lands during the dry season (i.e. summer) may be 
food scarcity rather than thermal constraints, where 
offspring may experience reduced growth due to food 
shortage (Iraeta et al., 2006).

We studied two populations of the Guadarrama wall 
lizard, Podarcis guadarramae guadarramae (formerly 
named as P. hispanicus type 1, altitudinal range 650–
2100 m), located at each end of a 500-m elevational gra-
dient in the Guadarrama Mountains (central Spain) 
without geographical barriers but with contrasting 
environmental conditions. We selected these two popu-
lations because they differ in adult body size, morphol-
ogy, coloration and chemical sexual signals, in spite 
of being genetically closely related (Martín & López, 
2006; Gabirot, López & Martín, 2012, 2013). Results 
from a common garden experiment provided evidence 
that the divergent adult body sizes of these two popula-
tions of P. g. guadarramae lizards are not driven by size 
at hatching nor intrinsic post-hatching growth rates 
(Ortega, López & Martín, 2015). The work presented 
here constitutes the next step and aims to determine 
which factors drive phenotypic plasticity along eleva-
tional gradients in this system. Thus, we performed a 
reciprocal transplant experiment of hatchling lizards 
and compared hatchling growth rates to determine the 
relative contribution of phenotypic plasticity and local 
adaptation to different climatic conditions. Specifically, 
we hypothesized that if environmental differences 
were responsible for growth rate differences of juve-
niles, then the source population would not determine 
growth rates and, hence, we would find the same phe-
notypes in the same environment. Conversely, and 
considering that previous research showed an absence 
of intrinsic differences (Ortega et al., 2015), if pheno-
typic divergence between populations is maintained 
across different environments, maternal effects could 
be responsible for different juvenile growth rates due 
to differential allocation of resources to the eggs. We 
also measured food availability in both populations to 
test the hypothesis that productivity (i.e. food avail-
ability) has a direct effect on lizard growth rates. We 
predicted that, if extrinsic (environmental) factors are 
more important than intrinsic (genetic) ones, lizards 
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would grow faster, attaining a larger body size, in the 
site with higher humidity, milder temperatures and, 
ultimately, higher ecosystem productivity.

MATERIAL AND METHODS

STuDy SITES

During April–May 2013, gravid female P. g. guadar-
ramae lizards (n = 12, per population) were captured by 
noosing at two nearby populations in the Guadarrama 
Mountains (Central Spain). The lower elevation site 
was ‘La Dehesa de la Golondrina’, an oak forest near 
Cercedilla village (40°44′N, 04°02′W; 1250 m altitude). 
The higher elevation population was found in the 
upper part of a mountain valley (‘Fuenfría’) (40°47′N, 
04°03′W; 1750 m altitude) occupying granite rock walls 
and rock piles at the edge of a pine forest. These popu-
lations are located at different elevational ranges with 
contrasting climatic conditions separated 6 km by air 
(Ortega et al., 2015).

CLIMATIC CONDITIONS

We summarized the available environmental tempera-
tures and precipitations in the study areas by using 
long-term (from 1988 to 2002, as data from 2002 to 
2014 were not available) daily data from two nearby 
meteorological stations: ‘Embalse de Navacerrada’ 
(40°43′51″N, 04°00′49″; elevation 1207 m; Madrid 
province) and ‘Puerto de Navacerrada’ (40°46′50″N, 
04°00′37″W; elevation 1894 m; Madrid province) for 
the lower- and higher-elevation populations, respec-
tively (data available from the Spanish Meteorological 
Agency, ‘Agencia Española de Metereología, AEMET’; 
http://www.aemet.es). Monthly temperatures were 
measured as means of daily mean temperatures, and 
we also calculated means of daily maximum air tem-
peratures, as advised for ecophysiological studies of 
reptiles (Huey, 1982). We also included total precipita-
tion per month in our analyses.

ADuLT HuSbANDRy

Captured lizards were immediately transported to ‘El 
Ventorrillo’ field station facilities about 5 km away 
from the capture localities. Female lizards were kept 
in individual plastic terraria (40 × 30 × 25 cm; length 
× height × width) filled with a moistened coconut fibre 
substrate and provided with a shallow water bowl and 
a brick (24 × 8 × 11 cm; length × height × width) with 
six longitudinal holes (3 cm of diameter and 24 cm 
long) that allowed shelter and climbing opportunities. 
A 50 W halogen lamp (hotspot) was suspended over 
one end of the terrarium providing a diurnal tem-
perature gradient (21–45°C) during the photoperiod 

and allowed lizard thermoregulation (preferred tem-
perature: 34.4°C; Bauwens et al., 1995). In addition, 
fluorescent bulbs over the terraria provided ambient 
lighting mimicking the natural photoperiod, and mer-
cury vapour bulbs (Exoterra Solar Glow 125 W) pro-
vided ultraviolet radiation during 1.5 h a day (from 
14.00 to 15.30). Terraria were placed inside a climatic 
chamber (Ibercex V-450-D walk-in chamber; ASL S.A., 
Madrid, Spain) where temperature (diurnal = 21 °C; 
nocturnal = 15 °C) and photoperiod (12 h: 12 h, light: 
dark) were easily controlled automatically. Water was 
sprayed over the terraria and water bowls were filled 
with fresh water every day. Lizards were fed crickets 
(Acheta domesticus) and mealworms (Tenebrio mollitor)  
ad libitum, dusted with a commercial vitamin and cal-
cium supplement. Adult lizards were returned to their 
capture sites in late June.

EggS AND HATCHLINgS HuSbANDRy

Females laid egg within 9.3 ± 0.4 days (mean ± SE) 
after being captured. Cages were carefully checked for 
the presence of eggs twice daily. We focused our anal-
ysis on first clutches as they potentially reflect the 
field conditions (e.g. food availability) experienced by 
females in the wild before being captured, minimizing 
the effects of captivity. Eggs were individually placed in 
60-mL closed plastic cups filled with 10 g of moistened 
perlite (perlite: water ratio = 1: 1) and transferred to 
an incubator at 27.5 °C (94 × 60 × 60 cm; IRE-160; 
Raypa, Barcelona) where they were randomly distrib-
uted in the shelves, and the shelves were rotated inside 
the incubator every week to control for possible posi-
tion effects (Telemeco et al., 2010). The incubator was 
checked for lizard hatching daily. Immediately after 
hatching, we measured body size using a ruler [snout-
vent length (SVL) to the nearest 1 mm]. We measured 
‘body mass’ with a digital scale (to the nearest 0.01 g).

Preliminary studies revealed that in the field, 
under natural conditions, there is a high hatchling 
mortality during the winter (Ortega J, unpublished 
results). Thus, we decided to keep all hatchlings, 
which hatched in July and August, in the laboratory 
until the next spring under standardized environmen-
tal conditions, similar to those experienced in a pre-
vious common garden experiment (see Ortega et al., 
2015). A 50-W halogen lamp was suspended over one 
end of the terrarium providing a diurnal temperature 
gradient (21–45 °C) allowing thermoregulation of liz-
ards. A fluorescent bulb on each shelf provided ambi-
ent lighting mimicking the natural photoperiod, and 
mercury vapour bulbs (Exoterra Solar Glow 125 W) 
provided ultraviolet radiation during 1.5 h per day 
(from 1400 to 1530 h). From December to February, 
we simulated winter conditions decreasing ambient 
temperature to 5 °C and the availability of a hotspot 

http://www.aemet.es


4 J. ORTEGA ET AL.

© 2017 The Linnean Society of London, Biological Journal of the Linnean Society, 2017, XX, 1–11

to 1.5 h a day. As this species is active year-round and 
does not have a strict hibernation (Ortega J, unpub-
lished data), the former procedure was suspended 
for 3 days each month and ambient temperature was 
raised to 15 °C and the hotspot made available for 5 h. 
Crickets (A. domesticus) and fruit flies (Drosophila 
hydei) of an appropriate size were offered ad libitum 
the first day of each of these winter breaks. The pres-
ence of snow prevented access to the high-elevation 
site and thus, releasing hatchlings before May was not 
possible.

FIELD pROCEDuRES

Four outdoor enclosures (5 × 5 m2) were built in the 
typical habitats of the two localities where lizards 
were captured, without modifying the natural veg-
etation cover and the surroundings. Galvanized metal 
walls of 85 cm height, partly buried in the ground 
(25 cm), demarcated each enclosure. A net covered the 
enclosures from above to avoid bird predation. Five 
artificial boulders per enclosure, each one composed of 
four concrete bricks (50 × 25 × 25 cm; length × height 
× width) and covered with granite rocks, were added 
to mimic the saxicolous habitat of the species. Under 
each boulder, we excavated a pit of 25 cm of depth to fit 
a clay brick (24 × 8 × 11 cm; length × height × width) 
with six longitudinal holes (3 cm of diameter and 
24 cm long) to provide additional underground shelter.

In each locality, we placed two enclosures, one with 
lower elevation hatchlings (n = 13) and other with 
higher elevation hatchlings (n = 13). Thus, hatch-
ling lizards from mothers from the higher and lower 
altitude experienced the two growing environments. 
Specifically, we followed a split clutch design where 
half of the hatchlings from a given clutch (clutch 
mates) were randomly assigned to a lower-elevation 
enclosure and the other half to a higher-elevation one, 
so that at least one hatchling per female was raised in 
each treatment (lower elevation vs. higher elevation).

Hatchlings (n = 52 in total) were toe-clipped and 
photographed for further identification, measured and 
weighed prior to release in the outdoor enclosures in 
early spring (1 May 2014). In late spring (6–8 June) 
and late summer (9–11 September) we searched for 
juveniles during 3 days below bricks and rocks around 
9:00 am, before lizards became active. Juveniles were 
measured again in each recapture to estimate changes 
in body size, body mass, size-specific and mass-specific 
growth rates between recapture periods.

FOOD AvAILAbILITy AND DIvERSITy

Potential prey availability and diversity in each pop-
ulation were estimated in three periods (at hatchling 

release, early spring and late summer). We walked 
arbitrary transects within the study area, and then 
tossed a 20 × 20 cm2 wooden frame every 40 steps 
from a distance of about 1.5 m; we counted arthro-
pods contained within it (or escaping from it, such 
as grasshoppers) during a 1-min interval (Díaz & 
Carrascal, 1990). As P. guadarramae is a saxicolous 
species (Salvador & Carretero, 2014), we concen-
trated our sampling on rock boulders, rock cliffs and 
their surroundings. All prey items were identified 
to order except ants which were considered sepa-
rately from Hymenoptera due to its high abundance. 
Also, because P. guadarramae is a generalist spe-
cies (Salvador & Carretero, 2014), the availability 
of arthropods mirrors the potential prey availability. 
Diversity of arthropods was calculated by means of 
the Shannon–Weaver index for the taxonomic cat-
egories identified (Magurran, 1988): H′ = −Σpi ln pi 
where pi is the proportion of the species i.

STATISTICAL ANALySIS

The size-specific (SVL) and mass-specific growth 
were expressed as the proportionate increase in 
size or mass, measured in days−1 units (Iraeta et al., 
2006, 2012) according to the equation: G = [(ln (st/si)/
(d)], where st is the body length or body mass at time 
t, si is the initial body length or body mass and d 
is the time elapsed in days. To control for possible 
familiar effects, we also compared the size-specific 
growth rates of clutch mates released at different 
sites using repeated-measures general linear model 
(GLM). Body condition was estimated using the 
residuals of the regression of log–body mass on log-
SVL. We calculated growth rates and body condition 
for two periods: late spring and late summer. Except 
for the third recapture period, where we performed 
Mann–Whitney’s U-tests due to the low number of 
recaptured juveniles, all the statistical analyses 
were performed with GLMs with mother origin, 
release site and their interactions as fixed factors 
and were conducted in Statistica 8.0 (StatSoft Inc., 
Tulsa, OK, USA). We compared arthropod diver-
sity and abundance between populations and sea-
sons with GLMs with season, population and their 
interactions as fixed factors. Differences in mean 
and maximum air temperatures, and total pre-
cipitation between populations and months, were 
examined with GLMs with season, population and 
their interactions as fixed factors. Before the data 
analyses, normality and homoscedasticity were 
systematically checked for each variable using the 
Kolmogorov–Smirnov and Hartley tests, respec-
tively. We used Tukey’s honestly significant differ-
ence tests in pairwise comparisons.
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RESuLTS

CLIMATIC CONDITIONS

The mean air temperatures increased significantly 
within a given year from January to August in all pop-
ulations and reached the greatest values in July and 
August but temperatures were significantly greater 
in the lower-elevation population in all these months 
(GLM: month: F11,336 = 445.04, P < 0.001; locality: 
F1,336 = 552.41, P < 0.001; month × locality: F11,336 = 1.65, 
P = 0.083) (Fig. 1a). A similar result was observed for 
the means of daily maximum air temperatures, but 
the significant interaction indicated that the magni-
tude of the differences between sites differed among 
months so the discrepancy was greater during sum-
mer than during winter (GLM: month: F11,336 = 271.52, 
P < 0.001; locality: F1,336 = 450.97, P < 0.001; month × 
locality: F11,336 = 2.57, P = 0.004) (Fig. 1b). Total pre-
cipitation varied greatly between months, decreased 
significantly from May to August in both populations 
and was significantly greater in the higher-elevation 
site (GLM: month: F11,336 = 10.34, P < 0.001; locality: 
F1,336 = 21.95, P < 0.001; month × locality: F11,336 = 0.44, 
P = 0.937) (Fig. 1c). Tukey’s post hoc tests revealed sig-
nificant differences in mean and maximum tempera-
tures between localities from May to September (all 
Ps > 0.004), while although precipitations tended to 
be higher in high elevation from May to September, 
the differences were not significant (all Ps > 0.100). 
Overall, the higher-elevation population has a climate 
that is colder and more humid than in the lower-eleva-
tion population.

HATCHLINg MORpHOLOgy

Body size, body mass and body condition of hatchlings 
from low- and high-altitude populations were similar 
at hatching in the laboratory (GLMs: SVL: F1,50 = 0.62, 
P = 0.433; body mass: F1,50 = 0.77, P = 0.385; body 
condition: F1,50 = 0.06, P = 0.808) (Fig. 3). Body size, 
body mass and body condition were still similar at the 
moment of release in the enclosures in early spring 
(May) (GLMs: SVL: F1,50 = 1.56, P = 0.218; body mass: 
F1,50 = 2.59, P = 0.114; body condition: F1,50 = 0.01, 
P = 0.99) (Fig. 2).

A GLM with body size and body mass of lizards 
recaptured in late spring (i.e. June; 38 ± 1 days after 
they had been released) showed that lizards were sig-
nificantly larger and heavier in the higher-elevation 
enclosures independent of the population of origin 
(release site: N = 20, higher elevation; N = 19, lower 
elevation; population of origin: N = 21, higher eleva-
tion; N = 18, lower elevation; SVL: GLM, release site: 
F1,35 = 28.70, P < 0.001; site of origin: F1,35 = 1.83, P = 
0.185; release site × site of origin: F1,35 = 0.42, P = 0.523; 
body mass: GLM, release site: F1,35 = 18.33, P < 0.001; 

site of origin: F1,35 = 2.71, P = 0.109; release site × site 
of origin: F1,35 = 0.07, P = 0.794) (Fig. 2a, b). However, 
body condition was similar between release sites and 

Figure 1. Variation in (a) daily mean and (b) daily maxi-
mum air temperatures, and (c) total monthly precipitation 
in the lower- and higher-elevation localities. Data show aver-
age (±SE) monthly values for a 15-year period (1988–2002).
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population of origin (GLM: release site: F1,35 = 0.34, P = 
0.560; site of origin: F1,35 = 0.74, P = 0.394; release site 
× site of origin: F1,35 = 0.06, P = 0.804) (Fig. 2c).

Lizards recaptured in late summer (i.e. September; 
96 ± 1 days after they had been released) were also 
larger (N = 7, higher elevation; N = 6, lower eleva-
tion; Mann–Whitney’s U-test: U = 2.00, Z = −2.71, 
P = 0.007) and heavier in the higher-elevation enclo-
sures (Mann–Whitney’s U-test: U = 0.00, Z = −3.00, 
P = 0.003) (Fig. 2a, b). The population of origin did 
not significantly affect body size (N = 8, higher eleva-
tion; N = 5; lower elevation; Mann–Whitney’s U-test: 
U = 13.50, Z = −0.95, P = 0.341) or body mass (Mann–
Whitney’s U-test: U = 20.00, Z = 0.01, P = 0.99) (Fig. 1a, 
b). However, body condition did not significantly dif-
fer between release sites (Mann–Whitney’s U-test: 
U = 21.00, Z = 0.01, P = 0.99) or between populations 
of origin (Mann–Whitney’s U-test: U = 8.00, Z = −1.76 
P = 0.079) (Fig. 2c).

HATCHLINg gROwTH

Between early and late spring (May to June), we found 
that hatchlings released at the higher-elevation site 
increased body size and body mass faster than those 
released at the lower-elevation site, independently of 
the origin of their mothers (Tables 1 and 2).

A repeated-measures GLM comparing the (aver-
age) growth rates of clutch mates reared at both sites 
showed that size-specific (SVL) growth rates were con-
sistently higher at the higher elevation site (repeated-
measures GLM: release site: F1,14 = 64.32, P < 0.001; 
site of origin: F1,14 = 0.26, P = 0.620; release site × site 
of origin: F1,14 = 1.09, P = 0.315). We found a similar 
result for mass-specific growth (repeated-measures 
GLM: release site: F1,14 = 22.52, P = 0.003; site of ori-
gin: F1,14 = 0.31, P = 0.587; release site × site of origin: 
F1,14 = 0.01, P = 0.909).

Lizards recaptured in late summer (September) 
showed a significantly higher size-specific growth rate 
and a significantly higher mass-specific growth rate in 
the higher-elevation than in the lower-elevation enclo-
sures. However, we did not find significant differences 
due to the population of origin in size-specific growth 
or mass-specific growth (Tables 1 and 2).

FOOD AvAILAbILITy AND DIvERSITy

The number of available potential prey items was 
significantly higher in the higher-elevation site in 
all seasons and there were significant differences 
among seasons in both populations (gLM: season: 
F2,138 = 13.16, P < 0.001; population F1,138 = 90.15, 
P < 0.001; season × population: F2,138 = 1.53, P = 0.220) 
(Fig. 3a). Tukey’s post hoc tests revealed that overall 
prey availability was lower in late summer than in 
early spring (P = 0.007) and in late spring (P < 0.001), 
while there were no significant differences between 
the two spring sampling periods (P = 0.095).

Figure 2. Changes in mean (±SE) (a) body length [snout-
to-vent length (SVL) in cm], (b) body mass (g) and (c) body 
condition indexes of juvenile Podarcis guadarramae lizards 
at hatching, when they were released (early spring, 1 May 
2014) and at two recapture periods (late spring and late sum-
mer, 6–8 June and 9–11 September, respectively), depending 
on mother origin and the growth environment (i.e. release 
site or localization of enclosures). Error bars depict, from left 
to right: release, early spring, late spring and late summer.
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The diversity of potential prey differed signifi-
cantly among seasons in both populations and tended, 
although non-significantly, to be higher in the higher-
elevation site (GLM: season: F2,138 = 3.59, P = 0.030; 
population F1,138 = 3.20, P = 0.076; season × popula-
tion: F2,138 = 0.34, P = 0.713) (Fig. 3b). Tukey’s post hoc 
tests revealed significant differences in prey diversity 
between late spring and late summer (P = 0.035), 
while early spring did not significantly differ from late 
spring (P = 0.129) or late summer (P = 0.888).

DISCUSSION

Our results showed that lizards grew faster in the 
higher-altitude environment, independent of their 
population of origin. Thus, this study confirms our 
previous results from a common garden experiment 
suggesting that differences in growth and adult 
body size are a plastic response and not a prod-
uct of intrinsic genetic differences between popu-
lations (Ortega et al., 2015). We can also rule out 

population-specific maternal effects as the inter-
actions between maternal origin and release site 
were not significant in any case. Hence, all these 
evidences point out that body size differences are 
solely the result of environmental elements acting 
directly on hatchlings.

Lizards growing at the higher altitude, independ-
ent of their origin, have a larger body size than lizards 
growing at the lower altitude, following Bergmann’s 
rule (i.e. larger body size in colder environments) 
(Ortega et al., 2015). This is in sharp contrast 
with the vast majority of squamates which exhibit 
reversed Bergmann’s clines (Ashton & Feldman, 2003; 
Angilletta et al., 2004). One of the reasons that could 
explain the deviation from the reverse Bergmann’s 
cline in these P. g. guadarramae lizard populations 
is that resource limitation impairs somatic growth in 
warmer environments (Congdon, 1989; Dunham et al., 
1989). Several studies support a link between growth 
rates and productivity via climate effects that may be 
responsible for differential body size and life histories 
(Bauwens, 1985; Bauwens & Verheyen, 1987; Heulin, 

Table 1. Mean (±1 SE) values for growth rates of juvenile Podarcis g. guadarramae lizards in two recapture peri-
ods depending on the population of origin of their mothers and the growth environment (i.e. release site or location of 
enclosures)

Late spring Late summer

Size-specific  
growth rate (days−1)

Mass-specific  
growth rate (days−1)

Size-specific  
growth rate (days−1)

Mass-specific  
growth rate (days−1)

Population of origin
 Lower elevation 0.07298 ± 0.00199 −0.01253 ± 0.00246 0.03457 ± 0.00121 0.01356 ± 0.00152
 Higher elevation 0.07298 ± 0.00184 −0.01105 ± 0.00228 0.03361 ± 0.00096 0.01301 ± 0.00120
Release site
 Lower elevation 0.06972 ± 0.00071 −0.01790 ± 0.00194 0.03160 ± 0.00056 0.00996 ± 0.00038
 Higher elevation 0.07768 ± 0.00167 −0.00587 ± 0.00189 0.03603 ± 0.00052 0.01601 ± 0.00035

Size refers to snout-vent length (cm).

Table 2. Effects of release site, site of origin and release site × site of origin on size-specific and mass-specific growth of 
hatchlings from two populations of P. g. guadarramae lizards in two recapture periods

Release site Site of origin Release site × site of origin

Late spring
 Size-specific growth F1,35 = 10.84 F1,35 = 0.64 F1,35 = 0.02

P = 0.002 P = 0.428 P = 0.902
 Mass-specific growth F1,35 = 18.93 F1,35 = 0.19 F1,35 = 0.17

P < 0.001 P = 0.663 P = 0.682
Late summer
 Size-specific growth U = 0.01, Z = −3.00 U = 16.50, Z = −0.52

P = 0.003 P = 0.608
 Mass-specific growth U = 0.01, Z = −3.00 U = 20.00, Z = 0.01

P = 0.003 P = 0.999
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1985; Buckley, Irschick & Adolph, 2007; Díaz et al., 
2011).

In our study system, the main drivers of body size 
differences between the higher- and lower-altitude 
populations seem to be food and water availability, 
which differs both between sites and between seasons 
and, very likely, directly affect growth rates. In line 
with this, we also found that precipitation was higher 
at the higher elevation. We also found that, conversely, 
mean and maximum temperatures were higher in 
the lower-elevation site which may also reduce water 
availability and ambient humidity. Environmental 
constraints such as food abundance may be corre-
lated with humidity and could, in turn, limit growth 
rate because of limited energy availability (Stamps & 
Tanaka, 1981). The abundance of potential prey, size-
specific and mass-specific growth rates were higher at 
the higher-altitude site. In keeping with these results, 
prey availability fluctuated seasonally and matched 
lizard growth; size-specific growth rates, mass-specific 
growth rates and prey availability were maximal in 
late spring. Moreover, prey diversity was also higher in 
spring than in late summer, which might also impact 

growth as a higher diversity of invertebrates is consid-
ered beneficial for a generalist lizard species (Salvador 
& Carretero, 2014).

In desert habitats, low primary productivity is pri-
marily caused by low water availability (Noy-Meir, 
1973, 1974; Webb et al., 1978; Cunningham et al., 
1979; Hadley & Szarek, 1981) which indirectly limits 
secondary production (Dunham, 1981). Similar envi-
ronmental restrictions are common in Mediterranean 
lowlands where drought becomes less restrictive as 
altitude increases due to milder temperatures and 
higher precipitation, which increase productivity 
(Nahal, 1981; Iraeta et al., 2012). Thus, the resource 
acquisition constraints imposed in the lower-eleva-
tion site, which are more severe in summer, may be 
responsible for the observed slower growth rates, as 
has been demonstrated in other insectivorous lizard 
species (Dunham, 1978; Ballinger & Congdon, 1980; 
Iraeta et al., 2006). However, we cannot dismiss the 
possible additional role of limitations in resource har-
vest rates. For example, in Sceloporus merriami liz-
ards, the thermal environment during the summer (i.e. 
high temperatures) restricts lizard activity to a brief 
period each day, constraining foraging and, hence, lim-
iting the access to food (Grant & Dunham, 1987). We 
did not examine whether activity patterns of lizards 
vary seasonally or between sites. Nonetheless, the 
effects of summer drought and higher temperatures 
are more evident in the lower-elevation site, where 
few lizards are observed active in summer (Ortega et 
al., 2015). Lizards from the lower altitude might also 
reduce activity to avoid dehydration (Jones et al., 1987; 
Lorenzon et al., 1999). Indeed, water availability itself 
may have a primary limiting effect on growth, even 
when food supplies are abundant (Stamps & Tanaka, 
1981). Thus, the resource limitation and the harvest 
rate limitation hypotheses are not mutually exclusive 
and might shape a landscape where the lower-eleva-
tion site is a poor environment for food acquisition, has 
low water availability during summer and, hence, lead 
to slower growth rates.

Nonetheless, we should acknowledge other poten-
tial sources of variation in body size that we did not 
control in our experimental design. First, as eggs were 
incubated under common garden conditions, the con-
trasting temperatures and precipitations between 
sites might affect incubation conditions so that eggs 
from higher elevation could experience lower tem-
peratures and increased moisture availability during 
development which may affect offspring growth rates 
and body size (Packard et al., 1987; Overall, 1994; 
Telemeco et al., 2010) and could increase the magni-
tude of the phenotypic differences found here. However, 
female microhabitat selection during egg-laying may 
buffer potential differences in incubation conditions 
between high and low elevation. Second, reproductive 

Figure 3. (a) Number of available prey (mean ± SE) and 
(b) diversity of prey types (H′) in the lower- and higher-ele-
vation localities at three periods of the year (early and late 
spring and late summer). 
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phenology (e.g. timing of laying) could differ between 
high- and low-elevation environments. Nonetheless, 
we consider this possibility unlikely as our previous 
study showed that neither laying date nor incubation 
period differed between sites (Ortega et al., 2015). Last, 
some ectotherms in colder climates have high rates of 
growth and development, which would tend to coun-
teract the proximate effects of lower temperatures, 
such as shorter annual periods for activity and growth 
(Conover & Schultz, 1995; Oufieroi & Angilletta, 2006). 
But this is not the case of our system as hatchlings 
released in the higher-elevation site grew faster and, 
hence, attained larger body sizes independent of their 
population of origin, confirming that intrinsic differ-
ences are not responsible for this pattern.

It is also worth noting that to generalize our results 
to Mediterranean lizards in the Iberian Peninsula, we 
would need more replicates of both higher and lower 
elevation sites to know if this pattern is general and 
widespread not just in P. g. guadarramae but also 
in other lizard species with Mediterranean distribu-
tion. Although our lower altitude site is located at 
a medium altitude (1250 m), it experiences typical 
Mediterranean climatic conditions and, among them, 
low precipitation levels and high temperatures dur-
ing the summer are very pronounced due to the con-
tinental climatic influence in the centre of the Iberian 
Peninsula. Our results are in accordance with most 
research on Mediterranean lizards where primary pro-
ductivity is an important predictor of body size and/or 
growth (Aragón & Fitze, 2014; Iraeta et al., 2006).

Our findings agree with previous research in the P. 
hispanicus species complex which emphasizes the high 
morphological variability both within and between 
mitochondrial lineages (Kaliontzopoulou, Carretero 
& Llorente, 2012) and highlight the difficulty of iden-
tifying the ecological or evolutionary causes of varia-
tion in body size. Thus, phenotypic plasticity shapes 
a complex evolutionary scenario where this pattern of 
high morphological variability between populations 
may be, at least partially, induced by the proximate 
effects of local climatic conditions. We confirm the 
previous interpretation that the P. hispanicus species 
complex constitutes a promising model organism for 
the study of phenotypic diversification within emerg-
ing species (Pinho, Harris & Ferrand, 2007). The pre-
sent study emphasizes how geographical variation in 
body size can be produced by mechanisms not nec-
essarily related to the Bergmann’s rule (Palkovacs, 
2003; Aragón & Fitze, 2014). We reveal that hatchlings 
released in the higher-elevation site grew faster and, 
hence, attained larger body independent of population 
of origin, which may be mediated by the milder tem-
peratures and higher humidity that result in a higher 
availability of food and water at the higher-elevation 

site. Thus, the great influence of temperature and pre-
cipitation on development can lead to interpopulation 
differences in life histories that may become geneti-
cally fixed over time, giving rise to highly adapted local 
forms (Du et al., 2010; Iraeta et al., 2012). Hence, our 
results highlight the importance of environmental fac-
tors such as climatic conditions and ecosystem produc-
tivity as drivers of phenotypic diversification which is 
in line with recent research in the family Lacertidae 
(Hipsley & Müller, 2017).
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