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Abstract

The origin  of  the  common wall  lizards  (Podarcis muralis)  populations  in  south-eastern

Europe (namely in Bulgaria and Romania), representing the north-eastern range border of

this  species,  was  addressed  using  mitochondrial  DNA.  We  compared  cytochrome  b

sequences from Bulgaria and Romania with those from the contiguous range in Central

Europe that are available from previous studies. We recorded five main haplogroups in

Bulgaria and Romania, belonging to the Central Balkan clade. However, haplogroup III was
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recorded in more localities than previously found. Additionally, signs of haplotype admixture

were  identified  in  several  populations  along  the  Danube  River.  The  presence  of  the

Southern Alps haplotype in one population from Otopeni,  Bucharest  (Romania)  and its

close  phylogenetic  relationships  to  north  Italy  populations  suggests  human-mediated

introductions of this wall lizard clade in Romania. Our results confirm that P. muralis can

have non-native lineages and admixture through active human-mediated transport.

Keywords

phylogeography, genetic diversity, introduction, Eastern Europe, Lacertidae

Introduction

Detailed  phylogeographic  data  from  widespread  Western  Palearctic  species  are

particularly  valuable  for  evaluating  the  plausibility  of  a  scenario  of  Ice-age  survival  in

refugia. In the recent geological past (Pleistocene), climate fluctuations have resulted in

range shifts, leading to geographic isolation, genetic divergence and formation of more or

less distinct  lineages within well-defined species (Avise 1994,  Davies and Shaw 2001, 

Hewitt 2004, Sommer and Zachos 2009). Reptiles are an interesting group to study with

respect to biogeography and the evolution of local adaptation, particularly at the northern

limit  of the present-day ranges. In recent decades, phylogeographic studies have been

used to assess the genetic consequences of Pleistocene Ice Ages on various organisms,

highlighting  the  dynamic  nature  of  species  ranges  and  the  role  of  micro-evolutionary

processes in determining the extent and structure of intraspecific diversity (Hewitt 2000, 

Widmer  and  Lexer  2001,  Schmitt  2007).  Additionally,  inferences  from  geographical

organisation  of  genetic  markers  substantially  contribute  to  historical  and  ecological

biogeography, including identification of recent, human-mediated admixture (Lenk et al.

1999).

The  genus  Podarcis (Squamata,  Lacertidae)  comprises  approximately  25  species

(Speybroeck et al. 2020, Uetz et al. 2022). The origin of this taxon is hypothesised to have

occurred in the Oligocene, while the diversification amongst the main lineages within this

genus probably occurred during the Miocene (Yang et al. 2021). The Podarcis species with

the largest range is the Common Wall lizard Podarcis muralis (Laurenti, 1768) (Arnold et al.

2007, Sillero et al. 2014). This species is distributed from the Iberian Peninsula to Asia

Minor, but it is also native to extra-Mediterranean regions in estern, Central and Eastern

Europe (Sindaco and Jeremenko 2008, Schulte et al. 2012a). The distribution of P. muralis

is unusual relative to that of its congeners and, together with other characteristics, makes

this species a useful model for evaluating the relative contribution of southern versus extra-

Mediterranean  refugia  in  shaping  the  current  distribution  of  species  and  their  genetic

diversity.  Previous  studies,  based  on  mitochondrial  DNA  data,  suggested  that  such

widespread geographic distribution has been accompanied by regional differentiation into

more than 20 genetic lineages and several of them separated by low genetic divergence

(short internal branches; Salvi et al. 2013). Recent phylogenomic studies suggest a much

2 Oskyrko O et al



more complex scenario with a Miocenic origin in Italy, expansion to Iberia and the Balkans,

secondary contacts and Quaternary subdivision in lineages (Yang et al. 2022). Moreover, it

is  a  highly  successful  introduced  species  in  north-western  Europe,  including  England,

where around 150 non-native P. muralis populations have been identified (Schulte 2008, 

Michaelides et al. 2015).

Currently,  the  species  attains  the  north-eastern  limit  of  its  native  range  in  Romania,

occurring primarily along the Carpathian Mountains and in several  sites in the Danube

River valley and in the Dobruja region (Schulte 2008; Cogălniceanu et al. 2013). However,

previous  phylogeographic  studies  had  limited  data  for  south-eastern  Europe  and  the

resolution is therefore poor (Salvi et al. 2013, Jablonski et al. 2019, Yang et al. 2022). Of

particular  interest  is  the  region  along  the  Danube  on  the  Romanian-Bulgarian  border,

where human-mediated colonisation has already been identified in Ukraine (Oskyrko et al.

2020). That study cast doubts on the native status of some Romanian populations and

about  the  phylogeography  of  wall  lizards  in  this  area.  Indeed,  the  current  distribution

pattern suggests either recent expansion or range collapse and it may even be possible

that populations along the Danube are the results of recent colonisation, perhaps with the

help of humans.

The aim of our study was, therefore, to ascertain the origin and population structure of P. 

muralis in  south-eastern Europe and identify  the biogeographic  processes shaping the

genetic diversity of lizards at its north-eastern range margin. We sampled lizards from 28

locations  in  Romania  and  Bulgaria  to:  (1)  identify  the  geographic  distribution  of

mitochondrial haplotypes and (2) determine whether or not there is evidence for recent

introductions of P. muralis.

Material and methods

We sequenced a region of the cytochrome b (cytb) gene in the mitochondrial genome of 50

P. muralis individuals from 28 locations in Bulgaria and Romania. Seven samples were

collected in Bulgaria (7 locations) and the remaining 43 in Romania (21 locations). Lizards

were captured and the outer tip (~ 1 cm) of the tails was removed by gently squeezing with

a pair of tweezers and stored in 96% ethanol (at a temperature of -80 C). All lizards were

released  at  the  capture  location.  The  samples  were  collected  during  2017-2021.  The

geographical coordinates were recorded with a hand-held GPS (Garmin Montana 700i and

Garmin GPSMAP 64s).  The geographic references are given in Table 1 and shown in

Fig. 1.

DNA was extracted and approximately a 700 base pair (bp) region of the cytb gene was

amplified  following  the  same  protocol  as  in  previous  works  (Michaelides  et  al.  2013, 

Michaelides et al. 2015, Uller et al. 2019). Partial mitochondrial DNA (mtDNA) cytb gene

was amplified by PCR using the primer pair LGlulk (5′-AACCGCCTGTTGTCTTCAACTA-3′)

and  Hpod  (5′-GGTGGAATGGGATTTTGTCTG-3′)  (Podnar  et  al.  2007,  Schulte  et  al. 

2012a, Michaelides  et  al.  2013)  and  the  primers  GluDG-L  (5'-  TGACTT

GAARAACCAYCGTTG-3') and CB3H (5'-GGCAAATAGGAARTATCATTC-3') from Palumbi

0
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et al. (1991). Amplifications were carried out in a total volume of 15 μl consisting of 7.5 μl of

MyTaq HS Mix, 0.45 μl (8 pmol) of each primer, 4.6 μl PCR-grade H O and 2 μl template

DNA. The PCR conditions were as follows: an initial denaturation step at 94°C for 1 min,

followed by 34-35 cycles at 94°C for 1 min (or 30 s for some samples) , 53°C for 45 s or

52°C for 60 s and 72°C for 1 min and a final extension step at 72°C for 10 min (Jablonski

et  al.  2019 and  Uller  et  al.  2019).  Products  were  visualised  with  1.5%  agarose  gel

electrophoresis. The PCR products were purified using the ExoSAP-IT Cleanup Reagent

(Applied  Biosystems).  The suitable  amplicons  were  sent  to  external  service  (Beckman

Coulter  Genomics,  Porto,  Portugal)  or  processed  in-house  at  Lund  University  (Lund,

Sweden) for purification and Sanger-sequencing. New sequences used in this study were

submitted to GenBank under the accession numbers ON666630-ON666679.

№ GenBank accession

number 

Country Locality Coordinates Haplogroup Year of collection

N E 

1 ON666630 Bulgaria Gabrovitsa 42.263 23.920 V 2018

2 ON666631 Bulgaria Pleven 43.423 24.611 V 2017

3 ON666632 Bulgaria Obzor 42.789 27.885 V 2020

4 ON666633 Bulgaria Isperikhovo 43.714 26.921 V 2020

5 ON666634 Bulgaria Karlukovo 43.180 24.068 V 2021

6 ON666635 Bulgaria Falkovets 43.586 22.783 V 2021

7 ON666636 Bulgaria Shejnovo 42.685 25.308 V 2020

8 ON666637 Romania Bistriţa Vâlcea 45.213 24.030 V 2021

9 ON666638 Romania Capu Dealului 44.990 24.237 V 2021

10 ON666639 Romania Turia 46.055 26.042 V 2021

11 ON666640 Romania Căciulata Vâlcea 45.272 24.315 V 2021

12 ON666641 Romania Băneasa 44.068 27.646 II 2021

13 ON666642 Romania Băneasa 44.068 27.646 II 2021

14 ON666643 Romania Băneasa 44.068 27.646 V 2021

15 ON666644 Romania Caransebeş 45.417 22.196 V 2020

16 ON666645 Romania Valea Mraconia 44.639 22.283 V 2020

17 ON666646 Romania Valea Mraconia 44.639 22.283 II 2020

18 ON666647 Romania Otopeni, Bucharest 44.563 26.063 Southern Alps 2021

19 ON666648 Romania Otopeni, Bucharest 44.563 26.063 Southern Alps 2021

20 ON666649 Romania Otopeni, Bucharest 44.563 26.063 Southern Alps 2021

21 ON666650 Romania Otopeni, Bucharest 44.563 26.063 Southern Alps 2021

22 ON666651 Romania Otopeni, Bucharest 44.563 26.063 Southern Alps 2021

2

Table 1. 

Tissue samples and sequences of Podarcis muralis used in this study.
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№ GenBank accession

number 

Country Locality Coordinates Haplogroup Year of collection

23 ON666652 Romania Lacul Morii, Bucharest 44.453 26.038 III 2019

24 ON666653 Romania Lacul Morii, Bucharest 44.453 26.038 III 2019

25 ON666654 Romania Lacul Morii, Bucharest 44.453 26.038 III 2019

26 ON666655 Romania Lacul Morii, Bucharest 44.453 26.038 III 2019

27 ON666656 Romania Lacul Morii, Bucharest 44.453 26.038 III 2019

28 ON666657 Romania Lacul Morii, Bucharest 44.453 26.038 III 2019

29 ON666658 Romania Lacul Morii, Bucharest 44.456 26.036 III 2019

30 ON666659 Romania Lacul Morii, Bucharest 44.456 26.036 III 2019

31 ON666660 Romania Lacul Morii, Bucharest 44.456 26.036 III 2019

32 ON666661 Romania Şviniţa 44.501 22.104 III 2019

33 ON666662 Romania Şviniţa 44.501 22.104 III 2019

34 ON666663 Romania Şviniţa 44.501 22.104 III 2019

35 ON666664 Romania Şviniţa 44.501 22.104 III 2019

36 ON666665 Romania Şviniţa 44.501 22.104 III 2019

37 ON666666 Romania Şviniţa 44.501 22.104 III 2019

38 ON666667 Romania Şviniţa 44.499 22.101 III 2019

39 ON666668 Romania Dubova 44.519 22.193 II 2019

40 ON666669 Romania Dubova 44.634 22.279 III 2019

41 ON666670 Romania Cernavodă 44.353 28.037 V 2018

42 ON666671 Romania Agighiol 45.032 28.880 V 2018

43 ON666672 Romania Pătârlagele 45.318 26.366 V 2018

44 ON666673 Romania Negrești 44.004 28.140 V 2018

45 ON666674 Romania Bugeac Lake 44.067 27.434 V 2018

46 ON666675 Romania Ciba 46.377 25.735 V 2020

47 ON666676 Romania Moneasa 46.473 22.299 V 2018

48 ON666677 Romania Gura Zlata 45.344 22.731 V 2019

49 ON666678 Romania Câmpeni 46.360 23.050 V 2019

50 ON666679 Romania Cloșani 45.067 22.803 V 2020

The sequences were corrected,  aligned and trimmed to a uniform length of  656 bp in

Geneious Prime v.2020.1 (https://www.geneious.com). The alignment was performed with

MAFFT  v.6  (Katoh  et  al.  2017).  For  the  species-wide  tree,  we  used  289  published

sequences from all  over the natural range (Poulakakis et al.  2005, Podnar et al.  2007, 

Schulte 2008, Giovannotti et al. 2010, Salvi et al. 2013, Michaelides et al. 2015, Jablonski

et al. 2019, Oskyrko et al. 2020). For the Central Balkan clade, we used 84 sequences

(MG851915-MG851983 and MN866797-MN866817) (Jablonski et al. 2019, Oskyrko et al.

2020).  The 136 samples  from the Italian  Peninsula  were  used from Giovannotti  et  al.

(2010), Salvi et al. (2013), Michaelides et al. (2015) and Jablonski et al. (2019) (FJ867365-
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FJ867394, KF372244-KF372225, KP972470-KP972539 and MG851980-MG851983). One

sequence  from Podarcis liolepis from GenBank  was  used  as  an  outgroup  (accession

number KF372218), following Salvi et al. (2013). The best-fitting model was Hasegawa–

Kishono–Yano+G (HKY+G) using Partition Finder 2 v.2.1 (Lanfear et al. 2017). Maximum

Likelihood (ML)  trees were constructed using IQ-TREE (Trifinopoulos et  al.  2016)  with

1000 pseudoreplicates  to  assess  the  confidence  of  branches.  Bayesian  Inference  (BI)

analysis was carried out by MrBayes v.3.2 (Huelsenbeck and Ronquist 2001) with 5×10

generations  and  four  chains  and  subsampling  parameters  and  trees  every  100

generations. Finally, 10% of the posterior samples were discarded as burn-in. The resulting

trees were annotated using FigTree 1.4.3 (Rambaut 2014).  To inspect the mtDNA cytb

haplotype diversity, a 95% maximum parsimony haplotype network was constructed using

the TCS inference in the programme TCS1.21 and tcsBU (Clement et al. 2000; Santos et

al. 2016). Permutation tests (p-distances) were evaluated in R 4.2.0 (R Core Team 2020)

using the “pegas” package (Paradis 2010). The map was created in QGIS 3.10.8 (Team

2020).

Results

We obtained 50 complete cytb sequences with no signal of contamination or sequences of

nuclear genomic origin. GenBank accession numbers for the sequences generated in this

study are reported in Table 1. The total tree, which included 346 specimens from the P. 

muralis natural range, showed that most of our samples collected in Bulgaria and Romania

were included in the Central Balkan clade (CB; Fig. 1, A). The average uncorrected genetic

distance between mitochondrial clades was 4.2%. The Bayesian Inference (BI)/Maximum

Likelihood (ML) analyses resulted in a phylogenetic tree for the CB clade (126 samples)

with many distinct haplogroups (Suppl. material 1), which is in general concordance with

previous studies (see discussion). The phylogenetic relationships inferred from the trees,

based on the combined mitochondrial sequences, showed a well-supported clade (BP ≥

90) with a geographic coherence. We received five well-supported haplogroups: I, II, III, IV

and V from eight countries (Bosnia and Herzegovina, Bulgaria, Czech Republic, Hungary,

Romania, Serbia, Slovakia and Ukraine). We did not find any new clades or haplogroups.

Out of the 50 new sequences from Bulgaria and Romania, 45 fell into three of the distinct

CB clades, II, III and V, previously known from Bulgaria, Serbia, Romania and Ukraine (Fig.

1). The phylogenetic networks depicting the relationships between haplotypes are shown in

Fig. 1. These haplogroups are separated from each other by 0.2–1.2% of uncorrected p-

distance in their cytb sequences. Most of our samples (n = 24) are included in the most

common haplogroup V, which includes 13 haplotypes. This haplogroup is mainly composed

of samples from northern and central Romania (17 localities), as well as all samples from

Bulgaria (seven localities). However, nine samples from Lacu Morii, Bucharest (Romania)

were included in haplogroup III.  Additionally,  the samples in the area of  the Romanian

villages of Svinita (n = 7) and Dubova (n = 1) were from this haplogroup as in previous

studies.  Only  four  of  our  specimens  belonged  to  haplogroup  II  (three  localities,  eight

haplotypes) and were collected from localities along the Danube. None of our new samples

grouped with haplogroups I and IV.
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For the first time, we collected five samples of P. muralis in Otopeni, Bucharest (Romania)

and these samples were not included in the CB clade during analysis. The BI/ML analyses

of these sequences revealed close affiliation with the Southern Alps clade, which has its

Figure 1.  

Map and networks of the natural distribution and introduced populations of Podarcis muralis in

this study. A Geographical position of the main cytb haplogroups of the Central Balkan clade

and Southern Alps clade in  the studied area.  Approximate species distribution is  given in

brown shading (Sillero et al. 2014). Colours of haplotypes follow colours from Jablonski et al.

(2019): I haplogroup - orange, II haplogroup - green, III haplogroup - violet, IV haplogroup -

yellow, V haplogroup - blue, Southern Alps clade - red. The numbers used for the samples in

this study are listed in Table 1; B. The main haplogroups of the Central Balkan clade (Schulte

2008, Jablonski et al. 2019, this study). Colours correspond to the country of the specimen’s

geographical  origin  and  each  circle  corresponds  to  a  haplotype.  Each  circle  size  is

proportional to their frequencies and open circles represent missing haplotypes. The different

colours within the network depict the principal identified haplotypes. Colours and numbering of

haplotypes according to Jablonski et al.  (2019); C The Southern Alps haplotypes network,

designed from the cytb from 29 individuals of P. muralis (Giovannotti et al. 2010, Salvi et al.

2013, Michaelides et al. 2015, Jablonski et al. 2019, this study). Colours correspond to the

country of the specimen’s geographical origin.  Circle size is proportional to the number of

samples under the same haplotype. Open circles represent missing haplotypes.
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main  distribution  in  northern  Italy  (Suppl.  material  2 and Fig.  1).  Our samples  closely

grouped with haplotypes from north-eastern Italy (FJ867367 and KF372225-KF372229).

Additionally,  for  the  first  time  for  Romania,  we  found  three  admixed  populations:  in

Bucharest  (two  different  haplogroups:  III  and  Southern  Alps  (SA)),  in  Băneasa  (two

haplotypes:  II  and  V)  and  the  range  of  Valea  Mraconia  and  Dubova  (three  different

haplogroups: II, III and V that are included in CB clade).

Discussion

The common wall lizard Podarcis muralis exhibits a complex phylogeographic pattern with

multiple  divergent  mtDNA  clades  across  its  range.  An  early  (Miocenic)  diversification

appears to have occurred in the south-central part of its current range, in what today is the

Italian Peninsula, followed by an expansion out of Italy and subsequent lineage subdivision

in the Iberian Peninsula, Central Europe and the Balkans (Salvi et al. 2013, Yang et al.

2022). However, it has been unclear to what extent the Central Balkan (CB) clade exhibits

a  well-defined  geographic  structure  since  it  was  sampled  less  thoroughly  in  previous

studies (Schulte 2008, Schulte et al. 2012b, Salvi et al. 2013, Jablonski et al. 2019, Yang et

al. 2022). In general, previous research suggested that the populations in Central Europe

originated from the CB clade and not from the southern Carpathian refugia, as would be

more likely given the phylogeographic patterns of several other reptile species (Salvi et al.

2013, Jablonski et al. 2019). However, due to a sampling gap in south-eastern Europe,

these conclusions remain preliminary. Moreover, recent analyses of the genome-wide data

have demonstrated extensive gene flow even between distantly-related mtDNA lineages of

P. muralis (Yang et al. 2018, Yang et al. 2020, Yang et al. 2022).

Our  results  have  added  more  clarity  to  the  diversity  of  haplotypes  in  this  region.  We

showed that the haplotype diversity was more often south of the Danube River, while the

populations on the Bulgarian and northern edge of the Romania distributional range are

relatively  uniform (Fig.  1).  A  refugial  area  in  the  south  Carpathians  has  already  been

suggested for many species showing high genetic diversity and distinct lineages in this

area (Willis and Van Andel 2004, Kotlík et al. 2006, Ursenbacher et al. 2008, Hammouti et

al. 2010). However, our results did not reveal isolated lines, but almost null or very shallow

divergence amongst P. muralis populations within the mtDNA clades in this area. Yet, the

use of  nuclear markers (Psonis et  al.  2018, Yang et al.  2020, Yang et al.  2022, Ruiz-

Miñano et al. 2022) is needed for assessing more detailed patterns of variation.

Our  results  suggest  that  a  more  precise  understanding  of  the  current  distribution  and

demography of  the  isolated  populations,  in  particular  along  the  Danube  River  itself,

(Romanian - Bulgarian border) that can be necessary to determine their history. Here, we

identify a non-native population of P. muralis in Otopeni, Bucharest (Fig. 2, A and C), which

were  found  to  exhibit  mitochondrial  genotypes  from  the  Southern  Alps  (SA)  clade,  a

lineage  whose  native  distribution  is  restricted  to  north-eastern  Italy  (Schulte  2008, 

Michaelides et al. 2015). This population is remarkable because it exhibits a bright green

colouration in the males (Fig. 2). We have not found similar colouration for this species

elsewhere  in  Romania  and  the  colouration  is  compatible  with  the  description  of  the
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subspecies  P. m. maculiventris from Italy.  However,  P. muralis from the  main  mtDNA

lineages are reproductively compatible (e.g.  While et  al.  2015,  MacGregor et  al.  2017, 

Yang et al. 2020) and introduced populations north of the native range margin are often

admixed (Michaelides et al. 2015, Beninde et al. 2018, Michaelides et al. 2015). Thus, it is

possible that this population represents admixture between CE and SA lineages.

Most likely, the SA origin of the Otopeni population is a result of human-mediated transport

on inland waterway vessels with construction materials,  plants or  other goods,  as was

discovered in other countries (Hedeen and Hedeen 1999, Gherghel et al. 2009, Santos et

al. 2019). This introduction resembles another record of P. muralis in the southern part of

Ukraine  (Reni  City)  that  were introduced  from  different  source  populations,  but  both

occurring within the "Central Balkan clade" (Oskyrko et al.  2020). We also found a CB

(haplogroup III) in another population from Lacul Morii, Bucharest (Fig. 2, B and D), which

likely  is  another  recent  introduction.  Multiple  native-range  sources  are  a  common

characteristic of biological invasions (Dlugosch and Parker 2008), including for invasive

lizards (Kolbe et al. 2004, Kolbe et al. 2007, Chapple et al. 2012, Schulte et al. 2012a).

Other cryptic introductions of different lineages are likely within the native range of the

species, but this can be difficult to identify without large sample sizes.

In  summary,  our  results  suggest  a  rather  homogeneous  genetic  structure  within  the

easternmost  part  of  the distribution of  the P. muralis.  Recent  human introductions are,

however, expanding the species range and resulting in introductions of different lineages,

showing  the  importance  of  documenting  cryptic  introductions  and  investigating  their

sources and pathways to avoid further possible invasions.

Figure 2.  

Representative pictures of Podarcis muralis and their habitats in Romania. A P. muralis from

Otopeni,  Bucharest  (Romania);  B P. muralis from  Lacul  Morii,  Bucharest  (Romania);  C

Otopeni, Bucharest (Romania); D Lacul Morii, Bucharest (Romania). Photos by T. Sos.
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