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Automated image classification is a thriving field of machine learning, and various successful applications dealing 
with biological images have recently emerged. In this work, we address the ability of these methods to identify 
species that are difficult to tell apart by humans due to their morphological similarity. We focus on distinguishing 
species of wall lizards, namely those belonging to the Podarcis hispanicus species complex, which constitutes a well-
known example of cryptic morphological variation. We address two classification experiments: (1) assignment of 
images of the morphologically relatively distinct P. bocagei and P. lusitanicus; and (2) distinction between the overall 
more cryptic nine taxa that compose this complex. We used four datasets (two image perspectives and individuals 
of the two sexes) and three deep-learning models to address each problem. Our results suggest a high ability of the 
models to identify the correct species, especially when combining predictions from different perspectives and models 
(accuracy of 95.9% and 97.1% for females and males, respectively, in the two-class case; and of 91.2% to 93.5% for 
females and males, respectively, in the nine-class case). Overall, these results establish deep-learning models as an 
important tool for field identification and monitoring of cryptic species complexes, alleviating the burden of expert 
or genetic identification.

ADDITIONAL KEYWORDS: convolutional neural networks – cryptic species – deep learning – image 
classification – lizards.

INTRODUCTION

Despite the conceptual difficulties associated with 
the definition of species [reviewed in Zachos (2016)], 
naming and identifying species is a task of utmost 
pertinence for modern science, and taxonomy is 
considered a fundamentally important discipline 
(Wilson, 2004). Biological research requires a common 
system for classifying, naming and identifying species 
diversity that can be used across all disciplines and 

between different researchers. Moreover, species 
as biological units, and their corresponding names, 
are important well beyond the strict context of 
systematics, transcending numerous other fields 
of biology, such as ecology, evolution, biodiversity 
monitoring and conservation; and are also key to other 
scientific disciplines, such as medicine, pharmacology, 
agriculture and international trade legislation.

Current taxonomic research faces several 
important challenges: first, the acknowledgement 
that the biodiversity of Earth is far from completely 
described (and that the magnitude of this gap is 
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also hard to uncover; Costello et al., 2013; Hortal et 
al., 2015). Second, the fact that Earth is facing its 
sixth (and largely human-induced) mass extinction 
(Ceballos et al., 2015) and that correctly cataloguing 
and identifying species is critical for monitoring 
and preserving biodiversity. Third, the well-known 
decrease of the taxonomic workforce over the 
past decades, a problem known as the 'taxonomic 
impediment' (Hopkins & Freckleton, 2002; Engel et al., 
2021). Together, these challenges contribute to what is 
recognized as one of the most significant constraints 
to the informed management of biodiversity, which 
is the lack of comprehensive knowledge on species 
distributions and their changes (Hortal et al., 2015). 
This is particularly difficult to obtain when species 
identification is not straightforward (Chenuil et al., 
2019). In this context, the need for automatic species 
identification from media such as images has been 
highlighted by different authors (Gaston & O’Neill, 
2004; MacLeod et al., 2010).

Fuelled by recent advances in image classification 
techniques and the collection of large-scale image 
datasets, this new endeavour is finally taking shape, 
with various examples across distinct taxonomic 
groups in recent years (see review in: Wäldchen & 
Mäder, 2018). These studies typically use image-
classification techniques based on the so-called deep-
learning methods, which are capable of capturing 
high-level abstractions from data, and particularly 
on convolutional neural networks (CNNs), which are 
currently the state-of-the-art algorithm for image 
classification tasks. This type of artificial neural 
networks is particularly useful for processing data 
with a grid-like topology, such as images, and surpasses 
the need for preliminary feature extraction (that is, 
the selection of characteristics potentially important 
for classification), a common practice in the field prior 
to the development of these methods (Wäldchen & 
Mäder, 2018).

The application of deep-learning classification 
methods to biological images is a thriving field. A 
type of dataset in which these methods have been a 
turning point is that generated by camera traps (Chen 
et al., 2014; Nguyen et al., 2017; Norouzzadeh et al., 
2018; Miao et al., 2019), but large image collections 
are becoming available in a variety of different 
contexts. Regarding taxonomy-related applications, 
a diverse array of studies focus on the identification 
of plants (mostly comprising vast taxonomic scopes) 
(Lee et al., 2015; Zhou et al., 2016; Barré et al., 2017; 
Gogul & Kumar, 2017; Seeland et al., 2019) or insects 
(Marques et al., 2018; Arzar et al., 2019; Almryad & 
Kutucu, 2020; Buschbacher et al., 2020; Hansen et al., 
2020; Milošević et al., 2020; Goodwin et al., 2021), two 
taxonomic groups with a long tradition in automated 
identification. A few studies address aquatic wildlife 

such as fish (dos Santos & Goncalves, 2019; Rauf et 
al., 2019; Lu et al., 2020), corals (Gómez-Rios et al., 
2019a, b) and foraminifers (Hsiang et al., 2019), 
while other taxonomic groups have been clearly 
under-represented. Apart from such case-specific 
applications, large-scale identification tools have 
been developed (Barré et al., 2017; Buschbacher 
et al., 2020), including also freely available mobile 
applications for the general public [e.g. iNaturalist 
Seek (https://www.inaturalist.org/pages/seek_app), 
Pl@ntNet (Affouard et al., 2017) or Flora Incognita 
(Mäder et al., 2021)]. These tools are revolutionizing 
the way that biodiversity is monitored and protected 
(Bonnet et al., 2020).

Importantly, to our knowledge, all of these 
appl ications focus on taxa that  are clearly 
morphologically distinct. The utility of deep-
learning methods in classifying images of species 
with subtle morphological differences, which human 
observers have difficulties in identifying, remains 
to be investigated. Here we fill this gap by applying 
deep-learning tools to the classification of images 
belonging to a group of highly similar species: 
Podarcis Wagler, 1830 wall lizards. This genus of 
lacertids is among the most abundant and successful 
reptiles in the Mediterranean region. We focus on 
the particularly cryptic Iberian and North African 
group of species, also known as the P. hispanicus 
(Steindachner, 1870) species complex, which form 
a monophyletic clade within the genus (Salvi et 
al., 2021; Yang et al., 2021). Despite significant 
genetic and ecological differentiation (Caeiro-Dias 
et al., 2018, 2021a, b; Pinho et al., 2007, 2008), these 
species are notably hard to identify morphologically, 
as the high intraspecific diversity often obscures 
interspecific differences (Kaliontzopoulou et al., 
2012b). Identification of the correct species, therefore, 
requires expert intervention or genetic tools, and 
particular cases such as P. lusitanicus Geniez et 
al., 2014 and P. guadarramae (Boscá, 1916) (until 
recently considered to be the same species) are cryptic 
(Caeiro-Dias et al., 2021b; Geniez et al., 2014). Wall 
lizards are currently models for biological studies 
in various disciplines (see: Salvi et al., 2021). One 
species in this group (P. carbonelli Pérez Mellado, 
1981) holds special conservation interest since it is 
classified as endangered and exhibits a declining 
population trend (Sá-Sousa et al., 2009). Enabling 
straightforward identification of wall lizards is thus 
important for downstream studies involving their 
monitoring and conservation. At the same time, 
given their overall similarity, these species are also 
an adequate case study to address the advantages 
and limitations of deep-learning methods applied 
to identifying images of morphologically similar 
species.
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MATERIAL AND METHODS

Classes Considered

We focused on two distinct identification experiments. 
The first involved the discrimination between P. 
bocagei (Seoane, 1885) and P. lusitanicus. This species 
pair was chosen for this initial analysis because these 
two species occur together, often on the same walls, 
throughout the north-west of the Iberian Peninsula. 
Hence, distinguishing between them is usually of 
practical interest since the geographic location of 
collection or sighting cannot help in this case (as it 
often does with other species of wall lizards). Moreover, 
although generally similar, as any other species in the 
genus, these two taxa in particular show important 
differences in size, coloration and head shape 
(Kaliontzopoulou et al., 2012a; Gomes et al., 2016), 
which make them good candidates for a preliminary 
test of the usefulness of computer vision models for 
studying this system.

The second experiment involved separating nine 
groups, which encompassed diversity representative 
of the whole species complex. Therefore, this dataset 
includes a larger spectrum of morphological variation, 
including an array that goes from the more easily 
recognizable pair mentioned above, to cryptic forms, 
such as the pair of P. lusitanicus and P. guadarramae 
(Geniez et al., 2014; Caeiro-Dias et al., 2021b). The 
nine species/classes of Podarcis evaluated were: P. 
bocagei, P. carbonelli, P. guadarramae, P. hispanicus, 
P. liolepis (Boulenger, 1905), P. lusitanicus, P. vaucheri 
(Boulenger, 1905) s.s., P. vaucheri s.l. and P. virescens 
Geniez et al., 2014. Podarcis vaucheri s.s. includes 
the lineages ‘PVMA’ (from Morocco and Algeria), 
‘PVSSp’ and ‘PVSCSp’ (from south and south-
central Spain, respectively), whereas P. vaucheri s.l. 
includes the more distantly related lineages ‘PHTA’, 
‘PHBAT’, ‘PHAZA’ and ‘PHJS’ from Tunisia, isolates 
in Algeria and southern Morocco as defined in 
(Kaliontzopoulou et al., 2011). Recently, Bassitta et al. 
(2020) described a new species, P. galerai Basitta et 
al., 2020, corresponding to the southern populations 
of P. hispanicus. However, a more recent evaluation 
(Yang et al., 2021) demonstrated that P. galerai and 
P. hispanicus are sister-taxa, which contradicts one of 
the strongest arguments used by Bassitta et al. (2020) 
to separate the two forms. Hence, and also because 
splitting these two forms would imply a much lower 
sample size for both classes, in this study we preferred 
to adopt the conservative approach of merging the two 
putative species under the name P. hispanicus.

image datasets

The images that were used as input for this work 
were obtained between 2005 and 2015 in the scope 

of studies related to the eco-evolutionary dynamics 
of Iberian and North African Podarcis. Some of these 
images have been the object of previous studies 
involving geometric morphometrics techniques or 
scale count data (e.g. Kaliontzopoulou et al., 2012a, 
b). All individuals have been identified as one of the 
nine species/classes mentioned above via mtDNA 
sequencing at the population level (Kaliontzopoulou et 
al., 2011; Caeiro-Dias et al., 2018). Within each class, 
images were obtained in different collection localities 
(ranging from four to 21 localities per class, with 
more localities for species with a larger geographic 
distribution). The locality of origin was ignored in this 
work, but it adds to the natural variability of the data 
examined.

The images used are as standardized as possible 
(i.e. the same general perspectives were taken for all 
individuals against a low-complexity background) but 
they include substantial format, zoom, illumination 
and exposure differences, as well as positional 
variation and deformation, given that the animals 
were alive and moving when the photographs were 
taken. We used images from two perspectives: a dorsal 
view, including the entire body of the lizards (the tail, 
often autotomized, may or may not appear in the 
images) and a lateral close-up of the head. Figure 1 
represents examples of these two perspectives (before 
pre-processing) for the same individual. Because of 
the marked sexual dimorphism present in this genus 
(Kaliontzopoulou et al., 2007, 2015), males and females 
were analysed separately. Therefore, we analysed four 
distinct datasets for each of the two classification 
experiments (two different perspectives for each of the 
two sexes). Table 1 provides the breakdown of the total 
sample according to species, sex and perspective. The 
total number of images analysed ranged between 932 
and 1101, depending on the dataset. Please note that 
the images used for discriminating P. bocagei and P. 
lusitanicus (244–313 images) were also part of this 
larger dataset.

image pre-proCessing

We first made sure that images were all in the same 
orientation (snout facing towards the right), which 
required rotating a tiny percentage of images (most 
of the original dataset already conformed to this 
orientation). Subsequently, images were centred, 
cropped, converted to square format and resized 
to the same dimensions using the ImageMagiCk 
v.7.0.10 software (The ImageMagick Development 
Team, 2021). Although background removal is not 
mandatory for this type of analysis, many images 
included hand-written labels in the background (e.g. 
Fig. 1), potentially influencing classification outcomes. 
Instead of manually manipulating individual images 

D
ow

nloaded from
 https://academ

ic.oup.com
/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlac087/6777764 by guest on 03 N

ovem
ber 2022



4 C. PINHO ET AL.

© 2022 The Linnean Society of London, Zoological Journal of the Linnean Society, 2022, XX, 1–18

to remove such labels, we removed the background 
from all images. This was performed automatically 
using Adobe Photoshop 2021 (https://www.adobe.
com/pt/products/photoshop.html) in batch mode, with 
some manual corrections when needed.

experimental analyses

We used the same general framework in the two 
classification experiments presented in this work. Prior 
to the analyses, the datasets were subdivided into five 
replicates of the same size and class frequencies for 

cross-validation, that is, we created datasets for five-
fold cross-validation: three-folds (60% of images) were 
used for training, one-fold (20%) for validation and 
model parameter tuning during the learning process, 
and the remaining 20% were left unseen by the model 
for testing after the learning stage was completed.

We used the deep-learning library KERAS (Chollet et 
al., 2018) with TensorFlow (Abadi et al., 2016) as backend 
in PYTHON v.3.8. This is the most common framework 
for deep-learning image classification problems, 
enabling simple and streamlined workflows. Images 
were loaded with size 224 × 224 pixels. Besides rescaling 
the data so that all values fell between 0 and 1 (which 
is a common procedure also applied to validation and 
testing datasets), in the training datasets we performed 
data augmentation, since initial experiments suggested 
it greatly reduced overfitting. This is a technique that 
involves producing random modifications (such as 
rotation, zoom, range shifts, brightness changes, etc.) to 
the images presented to the model in order to create 
additional diversity. This procedure was different in the 
two classification experiments performed. In the two-
species experiment, data-augmentation parameters (i.e. 
the top limits of the uniform distribution from which 
image modification values are drawn) were set as follows: 
rotation_range = 70, width_shift_range = height_shift_
range = shear_range = zoom_range = 0.2, brightness_
range between 0.5 and 1.5. In the nine-class experiment, 
because initial trials suggested overfitting was still a 
problem (training accuracy was always much higher 
than validation accuracy), we increased the diversity 
in the data presented to the model by increasing the 
range of some data-augmentation parameters, namely 
width_shift_range, height_shift_range, shear_range 
and zoom_range, which were set to 0.7, and brightness_
range, which was established between 0.2 and 1.8. We 
did not augment data by flipping images since our 
datasets did not vary in this respect.

Figure 1. The two image types analysed in this study 
(before pre-processing): above, a dorsal view; below, a head 
lateral image. Both images correspond to the same Podarcis 
vaucheri s.l. male.

Table 1. Number of images per species, sex and image perspective

View Females Males

Dorsal Head_lateral Both Dorsal Head_lateral Both 

P. bocagei 168 171 167 210 214 210
P. carbonelli 96 95 95 108 108 108
P. guadarramae 49 49 49 63 63 63
P. hispanicus 31 31 31 41 41 41
P. liolepis 71 65 65 73 69 69
P. lusitanicus 76 76 76 98 99 98
P. vaucheri s.l. 49 51 49 61 61 61
P. vaucheri s.s. 206 233 202 216 241 215
P. virescens 186 186 185 205 205 205
TOTAL 932 957 919 1075 1101 1070
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Concerning the deep-learning models used, we chose 
three architectures based on common approaches in the 
literature: InceptionV3 (Szegedy et al., 2015), ResNet50 
(He et al., 2016) and Inception-ResNet-V2 (Szegedy et 
al., 2017). InceptionV3 is based on the repetition of the 
‘Inception’ module, which applies a 1 × 1 convolution 
and the concatenation of simultaneous operations to 
reduce the dimensionality of the problem, allowing 
an increase in the overall network depth. ResNet 
represented a dramatic breakthrough in the field by 
introducing the concept of residual learning, which 
involves adding identity mapping between some layers 
to improve backpropagation and minimize vanishing 
gradient problems, while also borrowing some 
concepts from Inception. Finally, Inception-ResNet-V2 
combines the Inception architecture with residual 
learning, showing significant improvements both 
in training speed and in classification success. All of 
the networks chosen are readily available in KERAS. 
Using a common practice in the field, we initialized 
the models with weights pre-trained from ImageNet (a 
large image dataset developed for academic purposes; 
Deng et al., 2009). The top fully connected layers were 
not imported. Instead, we added to the base model an 
average pooling layer, followed by a fully connected 
layer with 1024 units and ReLu activation, a 0.5 
dropout step and a final classifier (a single unit using 
the sigmoid activation in the binary classification and 
nine units using softmax activation in the nine class 
problem). In all cases, the tuning of model parameters 
was carried out on the complete network (the original 
architectures and the top layers added) and was carried 
out using the Adam optimizer (Kingma & Ba, 2014) 
with a learning rate of 0.0001 (although in preliminary 
tests we performed with different learning rates). A 
cross-entropy loss function was used. The learning 
process was conducted for 1000 epochs with a batch 
size of 32 in the two-species classification experiment 
and of 2000 epochs and a batch size of 64 in the nine-
class experiment. Because the classes in our datasets 
were unbalanced, and as preliminary runs showed an 
advantage in this approach, class weights were used to 
ensure that misclassifications in the lower frequency 
classes received higher penalties during model fitting. 
This was ensured by using the ‘balanced’ heuristic in 
the compute_class_weights function of the scikit-learn 
PYTHON module and using the resulting weights 
during model training. The classification success of the 
validation dataset for each cross-validation replicate 
was monitored during the learning stage, and used 
to guide the learning process and to select the best 
model. After training, learning curves for both the 
training and validation datasets were inspected using 
the TensorFlow visualization toolkit ‘TensorBoard’.

The best models (that is, those with the best 
performance with respect to the validation set) 

obtained during the training stage were used to make 
predictions and evaluate the performance of the 
methods on each test set. A matrix of probabilistic 
predictions for the whole dataset (combining 
predictions for all five cross-validation replicates) was 
then used to evaluate each model individually and to 
produce model ensemble predictions. For this purpose, 
we combined the predictions of the three models for 
each image by calculating the arithmetic mean of 
the probability for each class to obtain a within-
dataset model ensemble. We extended this approach 
by obtaining, for all individuals for which our dataset 
included both dorsal and head lateral images, the 
arithmetic mean of the probability estimated by all six 
models to produce a more representative prediction 
based on different image perspectives.

We used the PYTHON module scikit-learn to calculate 
several performance metrics: accuracy, precision, recall 
and F1-score, both globally using macro-averages and 
an estimate per class considering each class success 
versus all the others; and, in the case of the two-species 
experiment, the area under the receiver operating 
characteristic (ROC) curve, AUC. The confusion matrix 
detailing classification outcomes was also obtained. 
When relevant, performance metrics were compared 
using non-parametric procedures (Mann–Whitney–
Wilcoxon tests in the case of independent samples, 
i.e. between datasets, and Wilcoxon signed-rank tests 
in the case of comparisons involving the same cross 
validation replicates, that is, within datasets). All 
scripts used for training and evaluation can be found 
in https://github.com/catpinho/image_classification.

Finally, we used Gradient-Weighted Class Activation 
Mapping, Grad-CAM (Selvaraju et al., 2017) to produce 
heatmaps showing the areas of each training image 
that are important in classification. Grad-CAM is an 
increasingly popular visual explainer of deep-learning 
algorithms, particularly in the case of biological images, 
which uses the gradients of a class in a classification 
network flowing into the final convolution layer to 
produce a heatmap showing the visual localization 
of the important regions in the image involved in 
the classification. This was conducted for the best-
performing model in each case. We followed the 
implementation suggested in https://keras.io/examples/
vision/grad_cam/, with some minor modifications.

RESULTS

disCrimination between Podarcis bocagei and P. 
lusitanicus

The overall performance of the three methods for 
image classification of P. bocagei and P. lusitanicus in 
the four different datasets is shown in Table 2. Detailed 
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results, including training, validation and test-set 
evaluation for all cross-validation sets, are shown in 
the Supporting Information, Tables S1–S4. Accuracy 
is generally high, ranging from 87.3% in the case of 
InceptionV3 in female dorsal images to 94.8% in male 
dorsal images when applying InceptionResNetV2. 
AUC ranges from 0.931 using InceptionV3 in female 
dorsal images to 0.984 using Inception-ResNetV2 in 
male dorsal and head lateral images. F1-scores show 
that, typically, P. lusitanicus is more frequently mis-
classified than P. bocagei, for both types of images and 
for both sexes. All three methods perform similarly in 
all datasets considering the three performance metrics. 
Identification of males is generally more accurate than 
that of females. Considering all five cross-validation 
replicates of the three models, the identification 
accuracy of males is significantly higher than that 
of females only when considering dorsal images 
(P = 0.048, Mann–Whitney–Wilcoxon test). The same 
result is obtained, but even more pronounced, using 
other metrics (P = 0.009 and P = 0.030 for AUC and 
F1-scores, respectively). With respect to head lateral 
images, the difference in identification accuracy 
between sexes also exists but it is significant only 
for differences in AUC (P = 0.046, Mann–Whitney–
Wilcoxon test). There is no difference in performance 
using different image perspectives, neither in the case 
of males nor in that of females.

As an extension to this basic approach, we tested 
whether model ensembles (calculated by averaging 
predictions of different models) would increase 

classification success. Model ensembles within each of 
the four datasets do not always improve classification 
success compared to the best single model (see results 
in Table 2). For instance, in the case of head lateral 
images, prediction performance is worse with the model 
ensemble than when using the best-performing model 
alone. In the case of dorsal images, the improvement is 
slight for males and more substantial for females.

By contrast, combining the predictions from different 
views results in a much higher classification success 
in all cases, where accuracy reaches as high as 97.1% 
for males and 95.9% for females. These results are 
presented in Table 3 and the corresponding confusion 
matrices in Figure 2.

Grad-CAM heatmaps were produced only for the 
model showing the highest accuracy in each case 
(Inception-ResNet V2 in the case of male dorsal and 
head lateral images, ResNet50 in the case of female 
dorsal images and Inception V3 in the case of female 
head lateral images). Visualization of the heatmaps 
confirms that the models are indeed considering 
the lizard images for classification and not external 
features (like human fingers, writings, shadows and 
other non-lizard elements that appear in some images).

Examples of heatmaps used to discriminate the 
two classes are shown in Figure 3. In dorsal images, 
the model often uses the middle area of the trunk to 
discriminate the two classes. Still, the head region is 
also used (and both regions combined). In female dorsal 
images, the head is not as frequently used as the trunk, 
but the portion of the trunk used for discrimination is 

Table 2. Evaluation of the three tested architectures in the four datasets for the two-class experiment. Models with the 
highest accuracy are highlighted in bold

Sex View Metric* Inception V3 ResNet 50 Inception ResNetV2 Combined predictions 

Males Dorsal Accuracy 0.935 0.922 0.948 0.955
AUC 0.976 0.982 0.984 0.982
F1 Pboc 0.951 0.941 0.962 0.967
F1 Plus 0.905 0.887 0.919 0.930

Head lateral Accuracy 0.926 0.929 0.936 0.930
AUC 0.972 0.975 0.984 0.976
F1 Pboc 0.946 0.947 0.953 0.949
F1 Plus 0.882 0.895 0.889 0.885

Females Dorsal Accuracy 0.873 0.906 0.905 0.943
AUC 0.931 0.965 0.970 0.970
F1 Pboc 0.905 0.930 0.929 0.948
F1 Plus 0.810 0.857 0.859 0.908

Head lateral Accuracy 0.935 0.919 0.927 0.911
AUC 0.962 0.959 0.976 0.972
F1 Pboc 0.953 0.941 0.947 0.937
F1 Plus 0.897 0.87 0.872 0.847

*AUC refers to the area under the ROC curve. Podarcis bocagei was the positive class.
F1, harmonic mean of precision and recall; Pboc, Podarcis bocagei; Plus, Podarcis lusitanicus.

D
ow

nloaded from
 https://academ

ic.oup.com
/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlac087/6777764 by guest on 03 N

ovem
ber 2022

http://academic.oup.com/zoolinnean/article-lookup/doi/10.1093/zoolinnean/zlac087#supplementary-data


LIZARD CLASSIFICATION USING IMAGES 7

© 2022 The Linnean Society of London, Zoological Journal of the Linnean Society, 2022, XX, 1–18

generally more anterior than in males. In both male 
and female head lateral images, the area around the 
ear is the one most frequently used for classification, 
although this region could be more or less shifted 
towards the throat in both sexes.

disCrimination between the nine groups

Overall, the performance of the different models for 
classification of the nine classes is worse than in the 
two-class case. Unlike the experiment involving only P. 
bocagei and P. lusitanicus, in all analyses considering 
nine classes there is some evidence of overfitting (see 
the Supporting Information, Tables S5–S9 for detailed 
training, validation and testing evaluation scores), 
which could not be completely overcome by varying 
the hyperparameters. A summary of the performance 
of each model is presented in Table 4.

In general, accuracy ranges from 76.3% for ResNet50 in 
female head perspectives to 85.3% for InceptionResNetV2 
in male dorsal views. A striking result is the highly 
significant difference between male and female image 
identification accuracy, with consistently higher 
accuracies in male datasets, which holds for both types of 
images (P < 0.0001 for all comparisons, both for accuracy 
and F1 score, Mann–Whitney–Wilcoxon test). On the 
other hand, there are no differences in performance 
between the two types of images, neither for males nor 
for females. There are also no major differences between 
models in classification success. The only significant 
difference is detected in female head lateral images, 
in which ResNet50 performs significantly worse than 
Inception-ResNet V2 (P = 0.0325 for both accuracy and 
F1-score, Wilcoxon signed rank test). Unlike the two-
class case, in which the utility of ensemble models is 
mostly restricted to the combination of predictions from 
different perspectives, without important improvements 
in the within-dataset case, in the nine-class experiment 
ensemble models combining predictions from the three 
architectures for each image perspective greatly improve 
classification accuracy when compared to the best single 
model (see Table 4).

Using estimates from different views by averaging 
across the six model predictions improves classification 

success even further. These results are shown in Table 
5 and the respective confusion matrices shown in 
Figure 4. In this case, prediction accuracy reaches as 
high as 93.5% for males and 91.2% for females.

The distribution of classification metrics according 
to the species is shown in Table 5. Taking a deeper look 
into these classification scores, it appears that several 
species are fairly well recognizable, with F1 scores 
above 0.90: this is the case for P. bocagei, P. carbonelli, 
P. lusitanicus, P. vaucheri s.l., P. vaucheri s.s. and P. 
virescens in males, and for the same species except P. 
lusitanicus in females. The most problematic species 
is, in both sexes, P. liolepis. Considering confusion 
matrices, it is noticeable that individuals of this 
species are often misclassified as P. virescens (more 
so in the case of females than males). Noteworthy 
is that the misclassification between the cryptic P. 
guadarramae and P. lusitanicus is minimal (7.9% of 
P. lusitanicus females and 4.6% of males are classified 
as P. guadarramae and 0 and 1.6% of P. guadarramae 
females and males are classified as P. lusitanicus; see 
Fig. 4).

As for the two-class problem, Grad-CAM analyses 
show that, typically, the models use lizard – and 
not other – features for classification. However, 
even with the visualization tool available, it is not 
straightforward to understand what the model 
considers for discrimination. More precisely, the same 
regions seem to be used to classify distinct species, and 
it is not evident how differences in these regions are 
used. The most common patterns for each species are 
summarized in Tables 6 and 7 (for males and females, 
respectively).

DISCUSSION

The possibility of automating the identification of 
biological images can bring exciting new perspectives 
for the study and monitoring of biodiversity by 
surpassing the need of expert intervention and reducing 
the expenses associated to alternative techniques, such 
as molecular tools, but also by potentially signalling 
morphological differences that may have remained 

Table 3. Classification success of the six-model ensembles for the two-class experiments

 Males Females

Accuracy AUC F1 Precision Recall Accuracy AUC F1 Precision Recall 

Average/global 0.971 0.997 0.966 0.970 0.962 0.959 0.992 0.952 0.952 0.952
P. bocagei 0.979 0.972 0.986 0.970 0.970 0.970
P. lusitanicus 0.953 0.968 0.939 0.934 0.934 0.934

AUC was calculated assuming P. bocagei as the positive case; F1, precision and recall were macro-averaged.
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elusive to human observers. In this study, we proposed 
the application of deep-learning algorithms to identify 
images belonging to closely related and morphologically 
similar lizard species. To our knowledge, this is one of 

the first studies with a taxonomic endeavour conducted 
in squamates, and the first not focused on snakes. The 
objects of this study, wall lizards belonging to the P. 
hispanicus species complex, are common, widespread 

Figure 2. Confusion matrix for male (upper) and female (lower) image classification for the two-class case based on a 
combination of predictions from six models. Abbreviations used: Pboc, P. bocagei; Plus, P. lusitanicus.
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Figure 3. Example of Grad-CAM heatmaps obtained for Podarcis lusitanicus. The upper images show two common 
patterns observed in male dorsal images (also found, albeit with some differences, in females). The bottom images exhibit 
the patterns most frequently found in male and female head lateral images (here illustrated in two females).

Table 4. Evaluation of the three tested architectures and their combined predictions in the four datasets for the nine-
class experiment. Models with the highest accuracy are highlighted in bold

Sex View Metric Inception V3 ResNet 50 Inception ResNetV2 Combined predictions 

Males Dorsal Accuracy 0.849 0.832 0.853 0.886
F1 macro 0.826 0.806 0.829 0.866

Head lateral Accuracy 0.832 0.840 0.828 0.876
F1 macro 0.811 0.817 0.807 0.854

Females Dorsal Accuracy 0.799 0.783 0.819 0.854
F1 macro 0.772 0.758 0.793 0.827

Head lateral Accuracy 0.783 0.763 0.804 0.830
F1 macro 0.744 0.727 0.775 0.802
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species frequently found across Iberia and the Maghreb, 
and have long been a challenge for taxonomists and 
naturalists alike, because of the combination of low 
interspecific with huge inter-individual morphological 
variation (Kaliontzopoulou et al., 2012b). Our results 
highlight how computer vision models can be an 
important addition to the taxonomist toolbox even in 
the case of species that are difficult to identify. However, 
they also bring into focus relevant challenges associated 
with the biological interpretation of the information 
that such models provide; in particular, with respect to 
the morphological features considered to differentiate 
the focal species.

telling CryptiC speCies apart: overall high 
ClassifiCation suCCess

Throughout, and particularly for researchers familiar 
with the difficulties of identifying cryptic species, the 
results obtained here are remarkable as puzzling. 
With respect to the first classification experiment we 
conducted, the performance of computer vision models 
was remarkably high. This was expected, since the two 
species investigated, P. bocagei and P. lusitanicus, show 
morphological differences that enable their distinction 
by experts (namely a smaller size, less intense green 
coloration in the dorsum and flatter heads in the case 
of P. lusitanicus), but compared to other species that 
have been the object of studies involving deep-learning 
tools, they can still be considered fairly similar. In this 
context, the high classification success obtained in this 
study (from 90.4% in female dorsal to 94.8% accuracy 
in male dorsal images for single models, and as high as 
97.1% and 95.9% for males and females, respectively, 
using ensemble models to combine the results from the 
two image perspectives) is comparable to the accuracies 
generally reported in similar studies involving species 
not considered cryptic.

When addressing the more complex problem of 
simultaneously distinguishing among the nine species 
in the P. hispanicus species complex, classification 
success dropped significantly. For single models, 
accuracy ranged from 80.4% to 85.3% for the best-
performing architectures applied to female head lateral 
and male dorsal images, respectively. Combining the 
predictions obtained with different architectures for 
each image perspective increased this success to a 
moderate extent, and classification was highest when 
combining predictions from all six different image 
perspectives and model architectures for the same 
individual (93.5% in the case of males and 91.2% in 
the case of females). Although these improvements 
were significant, these accuracies are still below those 
obtained for the simpler distinction between P. bocagei 
and P. lusitanicus. However, it should be emphasized 
that, even if the models appear to fail often at 
classifying individuals into species among the nine 
classes compared to the two-class case or compared to 
computer vision models applied to other systems, the 
results obtained in this study are still, by far, the highest 
classification success obtained applying morphological 
characters in this system. Kaliontzopoulou et al. 
(2012b) focused on the same species group and applied 
a classification scheme based on classical characters 
traditionally used to distinguish lacertids and other 
lizard species: biometry (linear body measurements), 
pholidotic (scale-count) characters (in some cases 
obtained by analysing the same images used in the 
present study) and a combination of both types of 
characters. Although the exact classes considered were 
not the same and hence the results cannot be directly 
compared, classification results were typically much 
worse (mean of 56.6% in males and 51.73% in females). 
Results improved when other classification schemes 
were considered (binary schemes involving one class 
vs. all the others or all pairwise comparisons), which 

Table 5. Classification success of the six-model ensembles for the nine-class experiment

 Males Females

Accuracy F1 Precision Recall Accuracy F1 Precision Recall 

Average/global 0.935 0.923 0.940 0.910 0.912 0.894 0.918 0.877
P. bocagei 0.965 0.958 0.971 0.944 0.925 0.964
P. carbonelli 0.986 1.000 0.972 0.943 0.929 0.958
P. guadarramae 0.884 0.864 0.905 0.866 0.875 0.857
P. hispanicus 0.883 0.944 0.829 0.852 0.867 0.839
P. liolepis 0.829 0.944 0.739 0.793 0.957 0.677
P. lusitanicus 0.911 0.935 0.888 0.863 0.952 0.789
P. vaucheri s.l. 0.983 1.000 0.967 0.936 0.978 0.898
P. vaucheri s.s. 0.945 0.924 0.967 0.934 0.923 0.946
P. virescens 0.920 0.890 0.951 0.911 0.861 0.968

F1, harmonic mean of precision and recall.
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Figure 4. Confusion matrix for male (upper) and female (lower) image classification for the nine-class experiment based 
on a combination of predictions from six models. Abbreviations used: Pboc, P. bocagei; Pcar, P. carbonelli; Phis, P. hispanicus; 
Plio, P. liolepis; Plus, P. lusitanicus; Pvsl, P. vaucheri s.l.; Pvss, P. vaucheri s.s.; Pvir, P. virescens.
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Table 6. Summary of Grad-CAM results for each class (males)

P. bocagei Highly variable (no clear pattern). All portions of the dorsal views were equally 
used. In head images the area around the eye, the top of the head, the snout 
and the throat were all used in similar proportions. 

 
P. carbonelli Variable for both views. Snout and middle of the dorsum used in dorsal view. Top 

of the head most frequently (but not strictly) used in lateral view.

P. guadarramae Whole body used for dorsal view (but variable); either throat (most common) or ear 
region used in head lateral views.

P. hispanicus Variable. Anterior portion of snout used more frequently than in other species for 
both dorsal and head lateral views.

P. liolepis Highly variable. Whole body used in most dorsal images, area around the eye and 
throat used in head lateral views, but other patterns common.

P. lusitanicus Highly variable. All parts of the dorsum used (but frequently the most posterior 
part); area around the ear frequently used in head lateral images.

P. tunesiacus Highly variable. Dorsal area near the insertion of the posterior limbs used more 
frequently than in other species; different regions of the head used, often simul-
taneously.

P. vaucheri Highly variable. Different regions of dorsum (from head to the posterior region) 
used in dorsal images, all portions of the head, but most frequently the throat, 
used in lateral images.

P. virescens Highly variable. All parts of both images used. Head and anterior part of the 
dorsum more used than in other species.
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Table 7. Summary of Grad-CAM results for each class (females)

P. bocagei Highly variable. Mid-portion of the dorsum used frequently (al-
though other areas as well). Tip of the snout used often, but 
area around the ear and throat are also relevant. 

 
P. carbonelli Variable. In the dorsal view, the tip of the snout is frequently 

used. In the head lateral view, the tip of the snout is also com-
monly used, as well as the most posterior region of the head.

P. guadarramae Variable. Mid portion of the dorsum and tip of the snout are 
the regions used more frequently in dorsal and head lateral 
views, respectively.

P. hispanicus Variable. The head and most anterior part of the dorsum are 
frequently used in the dorsal view. Snout and/or top of pos-
terior region of head used.

P. liolepis Variable. Different parts of the dorsum are used, whereas the 
tip of the snout is used in most head lateral images.

P. lusitanicus Anterior dorsum, in the dorsal view, and both snout and pos-
terior side of the head (in head lateral views) frequently used.

P. tunesiacus Variable. Tip of the snout and posterior part of the trunk more 
used than in other species; snout and top head region behind 
the eye used with some frequency.

P. vaucheri Highly variable. All parts of the dorsum used in dorsal images, 
various parts of the head (but frequently snout and throat 
combined) used in head lateral images.

P. virescens Highly variable. All portions of the dorsum used in dorsal im-
ages, region around and behind the ear more used than in 
other species for head lateral images.
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could also be a future possibility to consider improving 
even further the use of computer vision models.

identifiCation of partiCular speCies: suCCesses 
and failures

The reduced performance of models in the nine-class 
problem is largely driven by the moderate to low ability 
of the models to classify certain species. In fact, whereas 
species such as P. virescens, P. bocagei or P. carbonelli 
are typically successfully classified (particularly, but 
not only, using model ensembles), individuals from 
other species are also frequently misidentified, and this 
is not completely solved by combining predictions from 
different model architectures and image perspectives. 
Podarcis liolepis, the Catalonian wall lizard, is a case in 
point. This species has a wide distribution throughout 
the eastern half of the Iberian Peninsula, probably one 
of the most widespread among those included in this 
study (Renoult et al., 2010). This means that this species 
is prone to encompass high morphological variability 
resulting from mechanisms such as adaptation and 
developmental plasticity to cope with widely varying 
environmental conditions, as has been observed in other 
species of the same clade with more limited distribution 
ranges (Kaliontzopoulou et al., 2010a, b, 2018). 
Moreover, some southern populations are completely 
isolated from the remainder of the species, suggesting 
that genetic drift might accentuate differentiation 
among populations. Finally, unlike other lizard species, 
which tend to be more or less homogeneous genetically, 
P. liolepis includes two distinct mitochondrial DNA 
lineages, one of them resulting from introgression with 
a now extinct form (Renoult et al., 2009). It is possible 
that these complex evolutionary dynamics have left 
their mark on morphological variation, making P. 
liolepis more diverse, in some aspects, than other species 
of the complex, hence more difficult to classify. Another 
possibly important reason for the misclassification of P. 
liolepis and other species is also current gene flow. This 
is a feature common in all Podarcis (Yang et al., 2021), 
and the P. hispanicus complex is no exception (see e.g. 
Caeiro-Dias et al., 2021a). This phenomenon could have 
a strong impact on the morphology of some individuals, 
particularly those coming from regions near contact 
zones.

An unexpected result of this study is the relatively 
high ability (considering the prior expectations) for 
the models to distinguish between P. lusitanicus 
and P. guadarramae. This is the most cryptic species 
pair included in this study, as individuals of these 
two species cannot be told apart even by the most 
experienced experts (Geniez et al., 2014). It is thus 
remarkable that in our study the proportion of 
individuals of one species identified as the other is 
substantially low (0.0–7.9% using model ensembles). 

Future studies may attempt to extract and evaluate 
the models’ features for classification and assess their 
eco-evolutionary implications (see also below).

Another remarkable result is the typically high 
classification success obtained for Podarcis carbonelli. 
Amongst the species in the Iberian and North 
African group, this is the only one that is currently 
of conservation concern, having been classified as 
‘endangered’ by the IUCN (Sá-Sousa et al., 2008). 
It is thus a promising result that computer vision 
models can identify P. carbonelli with a low error rate, 
since it enables the possibility of establishing citizen 
science distribution monitoring programmes directed 
at this species once these models become available in 
naturalist mobile applications.

sexual dimorphism and ClassifiCation suCCess

Lizards of the genus Podarcis typically exhibit 
a marked sexual dimorphism, which is also 
accompanied by a tendency for differences between 
different species to be more pronounced in males 
than in females. Indeed, females are usually more 
uniform since they are less brightly coloured and 
lack other external features that typically help 
identify males (Kaliontzopoulou et al., 2007). Similar 
to the difficulties experienced by human observers, 
classification success in this study was lower in 
females than in males in both problems. In the two-
species experiment, differences in classification 
success between the sexes were only evident in the 
dorsal view, whereas in the nine-species experiment 
these differences were significant for both views. 
The fact that sexual dimorphism does not affect the 
distinction between head lateral images of P. bocagei 
and P. lusitanicus probably results from the fact that 
the most obvious difference among the two species, 
the high degree of head flattening exhibited by P. 
lusitanicus, which is probably related to adaptation 
to living in rock crevices (Gomes et al., 2016; 
Kaliontzopoulou et al., 2012a, b), is shared by both 
males and females, and Grad-CAM analysis suggests 
that the height of the head is indeed a feature that 
the models consider. However, this feature alone does 
not distinguish between females of all nine classes, 
which is reflected in this case in a much lower ability 
of the models to correctly classify females in general.

Curiously, despite different levels of classification 
success between the sexes, overall patterns of 
classification and confusion between species appear 
to be concordant, where, for example, P. liolepis 
is poorly classified both in the case of males and 
females, and with similar percentages classified as 
other species. This suggests that at least some of the 
features that the models are using are not sexually 
dimorphic.
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the link between morphology and 
ClassifiCation: explaining deep-learning models

The visualization of heatmaps produced by Grad-CAM 
allowed highlighting regions in the images used by the 
algorithms to distinguish between species. On the one 
hand, this was important to verify that the models were 
using features of the morphology of lizards and not 
irrelevant regions of the images. However, the attempt 
to decipher the features in lizard images that differed 
the most between species (and that could constitute 
valuable new knowledge in terms of understanding 
the ecoevolutionary dynamics of these species) was 
hampered by the great diversity of patterns found 
within each species coupled with the repetition of the 
same regions in different species – highlighting that, 
probably, different aspects of these regions were used 
for classification but did not provide hints on which 
particular aspects these were. This could, in fact, be 
a fruitful area of future method development for 
collaborative research between biologists and analysts 
specialized in computer vision and machine-learning 
algorithms to aid the extraction of biologically relevant 
information from this kind of model. Although this 
analysis may lack some objectivity, since summarizing 
heatmap results is not straightforward, it appears that 
models use more diverse regions of the body to classify 
males than to classify females. This is in line with the 
trends described in the previous section, highlighting 
that male exhibit more differences between species 
than females.

methodologiCal Considerations

Despite our best efforts, classification success for the 
nine-class experiment was still problematic in some 
cases. Although there are probable biological causes 
for this pattern (see above), we cannot rule out that 
methodological issues involving sampling or model 
implementation are behind this suboptimal result. A 
possibly relevant aspect involves the unbalanced sample 
sizes of the different classes. We tried to minimize the 
impact of this problem in our workflow, but our results 
suggest that the species with the worst classification 
success are also those with the lowest sample sizes (a 
well-known problem in deep learning; Liu et al., 2017). 
Therefore, adding images of these species from other 
sources (like citizen science platforms) to increase 
sample sizes is an important future addition to this work. 
Similarly, since classification success improved when 
combining information from different perspectives, it is 
possible that adding photographs from different views 
(e.g. ventral scales, the gular area, etc.) improves even 
further the classification outcomes.

An interesting observation from this study is that there 
are no significant differences in success when applying 

different deep-learning models. The three models used in 
this work differ in depth and in the general architecture 
of the convolutional neural networks. Despite these 
differences, they all perform similarly on these datasets. 
However, even if the overall result is the same, it does 
not mean that the models are considering the same 
features of the images for classification. Combining the 
three models by performing a simple average of the 
predictions already improves classification success in 
the nine-class problem, but it involves a considerable 
computational cost and may not be feasible for general 
analyses in the long term.

Because of moderate classification accuracy for 
some species, the practical deployment of these models 
for research or conservation purposes is still not a 
possibility. However, the challenge of discriminating 
between all nine classes simultaneously is an 
interesting academic exercise but is not a realistic 
problem that a naturalist will face in the field; although 
there are species that overlap and regions where the 
distribution is not well-known, a real-life problem 
in this species complex will involve distinguishing 
between, at most, three to four species simultaneously. 
Including geographical information to assist 
classification and/or to reduce the number of classes 
under consideration will thus certainly facilitate the 
classification problem, and the results obtained here 
for the two-species classification experiment provide a 
particularly promising way forward.

CONCLUSIONS

With this work we illustrate that deep-learning models 
can be successfully used to identify wall lizard species, 
achieving classification accuracies probably comparable 
to those of experienced observers and much higher 
than those of the common citizen. Moreover, beyond 
the specific problem of classifying wall lizards, this 
work shows that computer vision models can be useful 
for the visual distinction of cryptic species, something 
that had remained unexplored in the literature, thus 
opening promising research and application avenues. 
This includes the case of species such as P. lusitanicus 
and P. guadarramae, for which this work is the first 
suggesting morphological differences.
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