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Weather conditions are important factors determining the activity, and consequently detection 

probability of animals. Especially in ectotherms from temperate habitats, activity can vary strongly 

depending on weather. The sand lizard Lacerta agilis is a wide-ranging lizard that is often subject 

to environmental impact assessments due to its proximity to humans and prevalence as a candi-

date for compensatory measures according to the Flora and Fauna Habitat Directive of the Europe-

an Union. Lacerta agilis has been studied extensively at certain edges of its distribution, but stud-

ies focusing on the core range have been rare. We use Bayesian models in order to identify the best 

explaining weather variables out of a large variety of available variables for a population of Lacer-

ta agilis in western Germany. We furthermore depict their interactions with an easy-to-understand regres-

sion tree model. Sand lizards have shown to be more active during dry conditions with low wind-

speeds. They further are best found after sunny weather with temperatures around 20°C. Rainfall 

in the previous 24 hours also increases the detection probability. An unpruned regression tree re-

affirms the results while giving concrete variable values and exploring how the values influence 

each other. Overall, the method delivers a decision tree based on easy-to-obtain weather variables 

that allows for post-survey analysis and for determination of the best survey conditions. 

Key words:  Bayesian model, Lacertidae, CART model, activity pattern, thermal ecology, Europe-

an lizard. 

Weather conditions play an important 

role on every ecological scale. The effects 

of climate change and global warming 

have been shown to affect ecological com-

munities on large scales (e.g., Gilman et 

al., 2010; Kordas et al., 2011), while local 

weather fluctuations can, for example, 

affect the ecology and phenotype of indi-

viduals (e.g., Vannini et al., 2021; Winter 

& Shields, 2021). The influence of weather 

conditions on animal populations and 

communities is an important subject in the 

study of ecology and the practice of con-

servation as weather conditions can influ-

ence population dynamics in numerous 

ways. Weather conditions can influence 

the phenotype of individuals in a popula-

tion. Western diamond back rattlesnakes 

(Crotalus atrox) in Arizona have been shown 

to become larger in colder, wetter environ-

ments than in dry and hot environments, 

presumably because hotter weather limits 

foraging time for the animals (Amarello et 

al., 2010). Similarly, weather can influence 
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prey availability as has been shown for 

frog eating keelbacks (Tropidonophis 

mairii), which have more reproductive success 

in hot and wet years, when frogs are more 

abundant (Brown & Shine, 2002; Brown & 

Shine, 2007). It has also been shown that 

weather conditions can directly influence 

movement patterns of lizards like the 

western green lizards (Lacerta bilineata) 

(Sound & Veith, 2000), and the Cuban 

brown anole (Anolis sagrei) (Lopez-Darias 

et al., 2012), as well as influence fecundity and 

survival rate (Adolph & Porter, 1993). So, 

especially for ectothermic species, day to 

day weather plays an important role.  

Consequently, weather conditions also 

have a strong influence on encounter rates 

during any type of field study involving 

ectotherms (e.g., Adolph & Porter, 1993; 

Brown & Shine, 2002; Spence-Bailey et al., 

2010). Be it general ecological field work or 

targeted environmental impact assess-

ments made in advance of a large develop-

mental project, many fieldwork studies on 

animals require visual encounter surveys 

or procedures otherwise dependent on the 

animal activity at the time of field work. 

For example, according to §16 of the 

UVPG (Gesetz für die Umweltverträglich-

keitsprüfung/Law for the environmental 

impact assessment) of the Federal Repub-

lic of Germany, part of an environmental 

impact assessment is the inventory and 

assessment of concerned species. It is 

therefore important to consider detection 

probability at the time of the surveys to 

correctly estimate population size. Fur-

thermore, knowing that detection proba-

bility within a population in advance can 

help schedule surveys on days at which 

conditions suggest detection probability is 

highest and thus maximize sample size. 

Existing literature on activity periods and 

detection probability of a species cannot be 

expected to accurately predict the phenol-

ogy of particular populations. Phenology, 

and therefore detection probability, are 

likely to differ among populations espe-

cially in wide ranged species (Kühnelt, 

1965). For those species, unless a study has 

been conducted specifically in the target 

area, previously reported activity patterns 

give no more than a rough idea at best.  

Lacerta agilis Linnaeus, 1758 is one of 

such widespread ectothermic species, oc-

curring in vast parts of the Palaearctic 

(Edgar & Bird, 2006). It is listed as “Least 

Concern” internationally in the IUCN red 

list but is locally threatened, especially in 

its north-western range (IUCN, 2020). As a 

synanthropic species, this mid-sized mem-

ber of the Lacertidae often lives near hu-

mans as it benefits from the open, bushy 

habitats humans create (House & Speller-

berg, 1983; Dent & Spellerberg, 1987; Bis-

choff, 1988; Nemes et al., 2006). However, 

due to its proximity to humans it is also 

often victim of developmental expansion 

and therefore, subject to environmental 

impact assessments and subsequent com-

pensatory measures after Appendix IV of 

the FFH Guidelines of the Natura2000 Pro-

ject (Rödder et al., 2016). It is therefore, a 

likely candidate to be subject to numerous 

visual encounter surveys in a variety of 

drastically different areas.  

Even though activity patterns of Lacer-

ta agilis have been studied in the past, many of 

those studies focus on the edges of their 

distribution, where Lacerta agilis is re-

stricted to montane areas (Amat et al., 

2003) or sand dunes (House et al., 1979; 
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House & Spellerberg, 1983; Dent & 

Spellerberg, 1987; Edgar & Bird, 2006), 

providing little insight into its ecological 

potency within the core range. For the 

closely related Lacerta viridis, it has al-

ready been shown that populations at the 

core and periphery of its distribution 

range differ in their realized niches (Prieto

-Ramirez et al., 2018).  

To summarize known weather prefer-

ences, Lacerta agilis within the mountain-

ous habitats in the Pyrenees favour air 

temperatures between 17°C and 20°C 

(Amat et al., 2003), while an activity peak at 

31°C-32°C has been reported for popula-

tions in Hungary near Budapest albeit 

here, temperatures 5 cm above ground 

level were measured (Heltai et al., 2015). 

In Latvia, warm and dry habitat has been 

reported as the most important factor 

(Čeirâns, 2006) as well. Sand lizards in 

lower Saxony, Germany, have been report-

ed to be most active around 20°C (Blanke, 

1999). Sand lizards in a South-West Siberi-

an coniferous forest are mainly dependent 

on low humidity and sunshine, while tem-

perature only plays a role if it fluctuates 

strongly (Kuranova et al., 2003). However, 

populations from southern England are by 

far the most extensively studied. Here, it 

was reported that temperatures have to 

reach 18°C before sand lizards come out 

and start basking (House et al., 1979; Ed-

gar & Bird, 2006; Fearnley, 2009). At 23°

C, basking is greatly reduced and lizards 

tend to retreat into burrows (House et al., 

1979; Edgar & Bird, 2006; Fearnley, 2009), 

and Lacerta agilis retreat into their bur-

rows at night at 19°C (House et al., 1979). 

Sand lizards have a bimodal activity 

pattern, hiding during the hot hours at 

noon but they can switch to a unimodal 

pattern on colder days (House et al., 1979). 

Sand lizards are generally more thermo-

philic than sympatrically occurring lizards 

like Zootaca vivipara, Anguis fragilis or 

Podarcis muralis (House et al., 1979; Litvi-

nov & Ganshchuk, 2003; Heltai et al., 

2015). Furthermore, sand lizards have 

been shown on multiple occasions to be 

heliothermic (Fearnley, 2009) and usually 

bask either by radiation alone, or by radia-

tion and convection (Saint Girons, 1976). 

To that end, Lacerta agilis usually bask in 

full sunlight, sheltered from the wind 

(Edgar & Bird, 2006), and favour high 

heat capacity spots for basking (House et 

al., 1979). Furthermore, activity declines when 

conditions are overcast or raining (House 

et al., 1979). Fearnley (2009) suggests that 

there are shifts in weather variable im-

portance before, during, and after breed-

ing season. Over time, temperature, sun-

shine intensity and duration and humidity 

seem to play a role for sand lizards 

(Fearnley, 2009), which are the variables 

we see reoccurring in other studies. 

In this study, we assess weather de-

pendent detection probabilities that identi-

fy key weather contributors. These can be 

used before a study to maximize encoun-

ter rates, as well as after or during a study 

to set encounter rates into context. We 

combine visual encounter surveys with the 

weather data of a nearby weather station, 

to identify weather components influenc-

ing the activity pattern of a population of 

Lacerta agilis in the Dellbrücker Heide in 

Northeast Cologne, Germany. We use a 

Bayesian model framework to identify the 

influence of the most important weather 

variables. Knowing the best explaining 
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terms, we also compute a CART model, a 

decision tree that can be used to determine 

the best overall weather conditions for 

high encounter rates. CART models use 

these explanatory variables to split the 

data into more homogenous groups 

(De’ath & Fabricius, 2000). In this case, 

the CART model groups subsets of similar 

encounter rates, based  on weather varia-

bles. Based on what is known on weather 

dependent activity patterns of sand lizards 

elsewhere, we expect that important fac-

tors will be temperature, sunshine dura-

tion and intensity, humidity and rainfall. 

We expect that ideal temperatures to be 

similar to other parts of Europe, between 

17°C and 23°C, and detection probability 

to be highest when sunshine duration and 

intensity are strongest, and conditions are 

dry. 

Materials and Methods 

Data Collection 

Data on the activity of L. agilis was col-

lected in the Dellbrücker Heide, a heath-

land nature reserve in northeast Cologne 

(approximate corners in WGS 84: NW: 

50.9836°N, 7.0514°E; NE: 50.9848°N, 

7.0611°E; SE: 50.9808°N, 7.0646°E; SW: 

50.9788°N, 7.0541°E). Data was collected 

from 02.05.2018 to 26.09.2018, from 

14.04.2019 to 03.09.2019, and from 

07.06.2020 to 11.09.2020. The same popula-

tion was studied in two further papers, 

which characterize the population 

(Clement et al., 2022; Schmitz et al., 2022). 

The area was split into three parts of 

roughly equal size (Fig. 1A). We randomly 

generated 100 points in ArcMap 10.6 

(ESRI, 2018) and went to the field to check 

them for accessibility, and potential suita-

bility for L. agilis. We chose 10 points in 

each third  that were accessible and suita-

ble for sand lizards (Fig. 1A). One random 

point became inaccessible in the central 

area as the area was fenced off as a pasture 

for goats and sheep. Afterwards, it was 

largely stripped of the needed vegetation 

and hence discarded. Within each week, 

each area was visited once, and lizards 

were registered around every point in a 

10m – 20m radius depending on vegeta-

tion density. One to two people spent 

around 15 minutes at a point. Areas were 

visited either in the morning (09:00 – 

12:00), during midday (12:00 – 15:00), or in 

the afternoon (15:00 – 18:00). Within the 

framework of another study (Schmitz et 

al., 2022), lizards were registered along tran-

sects 65 times as well to assess the distri-

bution across the area (Fig. 1B). Time to 

traverse the transects was taken and 

paused whenever a lizard was located. On 

average, one transect took 20-30 minutes 

to complete without stopping. Once a liz-

ard was detected, date and time were not-

ed as well as the time interval for the sam-

pling interval (morning, midday, or after-

noon). GPS Coordinates were recorded 

with the “My GPS Coordinates” app by 

GPS Tools. Relocations on the same day 

were avoided by keeping an eye on lizards 

recorded in close proximity and making 

special notice of striking features or partic-

ular back patterns. If there was uncertainty 

about a lizard already being recorded on 

that day, it was not recorded to avoid 

pseudoreplications. Usually, sampling was 

not initiated on rainy days but was contin-

ued if it started to rain during sampling. 

Each encounter was assigned with a 
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Figure 1: Study area in the Dellbrücker Heide with marked sampling points (A) and transects 

(B). Yellow pins were used to georeference the footage. Satellite photo taken with Google Earth. 

Top right shows the location within Germany. Map provided by https://simplemaps.com  

https://simplemaps.com
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unique ID. Overall, we recorded 1115 en-

counters (679 on random points and 436 

on transects) over a course of 205 days. 

Weather data for the time period was 

acquired from the Deutscher Wetterdienst 

(DWD). We used weather data recorded 

by the weather station “Köln-

Bonn” (ID2667), which is situated at 50°

51’N and 7°09’E and is hence, the closest 

weather station to the study area only be-

ing about 16km away. Table 1 shows a de-

scription of the used weather variables as 

well as their respective units. Weather data 

was recorded every 10 minutes and all 

variables can be found in the electronic 

supplement (Table S1).  

Data processing 

We estimated the relationship between 

temporal and environmental variables and 

the detection probability of sand lizards in 

a sampling interval using binomial gener-

alized linear models in a Bayesian frame-

work. The general workflow follows Fa-

laschi (2021), with the following refine-

ments: As environmental predictors, we 

Variable Name Description Unit 

max_temp 
Highest temperature recorded at 1m above ground within the last 10 

minutes 
°C 

min_temp 
Lowest temperature recorded at 1m above ground within the last 10 

minutes 
°C 

min_temp_5cm 
Lowest temperature recorded at 5cm above ground within the last 10 

minutes 
°C 

air_press 
Mean air pressure recorded at 1m above ground within the last 10 

minutes 
hPa 

air_temp Air temperature recorded at 1m above ground at that moment °C 

air_temp_5cm Air temperature recorded at 5cm above ground at that moment °C 

rel_humidity relative humidity recorded at 2m above ground at that moment % 

Tau_temp Dew point at that moment °C 

diffuse_radiation diffuse radiation at that moment J/cm^2 

global_rad global radiation at that moment J/cm^2 

sunshine_duration 
duration during which the sun shone unblocked within the last 10 

minutes. 
hour 

precip_duration duration during which it rained  within the last 10 minutes. minute 

precip_height Sum of precipitation height of the last 10 minutes. mm 

max_wind_speed Highest wind speed within the last 10 minutes m/s 

min_wind_speed lowest wind speed within the last 10 minutes m/s 

mean_max_wind_speed highest 10 minute average wind speed within the last 10 minutes. m/s 

mean_wind_speed mean wind speed within the last 10 minutes m/s 

Table 1: Explanation of weather variables used with units.  
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used the local weather data obtained from 

the DWD (Fig. 2A). As we expect time lags 

between some of the weather events such 

as rain or windspeed, we calculated the 

average of all values during the observa-

tion interval and during the three, six, 

twelve, and twenty-four hours prior to the 

beginning of the interval, identified by the 

suffixes_int (for averages during the obser-

vation interval), _3h, _6h, _12h, _24h (for 

averages in the 3/6/12/24 hours prior to the 

beginning of the observation interval) (Fig. 

2A→B). Hence, the total set of predictors 

comprised 85 variables as well as the Jul-

ian date, which was added as a temporal 

variable to include the possibility, that liz-

ards are influenced by length of day or 

show seasonal shifts in their activity 

patterns, which may change over the year 

(Fig. 2B). To estimate the distribution of 

likely coefficients of each term, the original 

variables were standardized using the 

bestNormalize function of the bestNormalize 

package for R (Peterson & Cavanaugh, 

2020; Peterson, 2021), automatically se-

lecting the optimal settings to reduce 

skewness and to scale the variables to a 

mean of zero and a standard deviation of 

one. 

As a first step, we analyzed the explan-

ative power of each candidate term sepa-

rately, by estimating the coefficients (a-d) 

for each variable (x) of the Bayesian model 

with the following structure (Fig. 2B→C):  

y = intercept + a * x + b * x^2 + c * x * 

julian date + d * x^2 * julian date 

The priors of the regression coeffi-

cients were set to uniform, ranging from -

10 to 10, and three chains were run (each 

20,000 interactions, discarding the first 

10,000 as burn-in) following (Falaschi, 

2021). Convergence was checked visually 

and by assessing Rhat values (<1.01 for 

each parameter). Significance of each 

term per variable was assessed by evalu-

ating the region of practical equivalence 

(ROPE) and pd (≥ 0.99) parameters, and 

the associated p-values using the 

bayestestR package (Makowski et al., 

2019), which were corrected for potential 

alpha-error inflation using a Bonferroni 

correction (p < 0.05). ROPE represents a 

null hypothesis to test if a parameter is 

significant, i.e., important enough to be 

included in the final model. The propor-

tion of the whole posterior distribution 

that does not lie within the ROPE interval 

can then be used to assess significance in 

terms of p-values (Makowski et al., 2019). 

The final set of terms comprised 38 poten-

tial candidates (Fig. 2C). To further re-

duce the number of candidates, we used 

the variance inflation factor with a cut-off 

of 10 to select the best suitable subset to 

compute the final model (Fig. 2C→D), as 

we expected some collinearity issues 

among the temporal subsets of the poten-

tial terms. The final set comprised 12 can-

didate terms (Fig. 2D), which were used 

to build a new binomial generalized line-

ar model with the following structure (Fig. 

2E):  

y = intercept + a*global_rad_3h + 

b*global_rad_int + c*mean_wind_speed_int 

+ d*min_wind_speed_6h + 

e*precip_duration_24h + f*rel_humidity_int 

+ g*sunshine_duration_12h + 

h*sunshine_duration_3h + 

i*sunshine_duration_int + j*(julian_date)2 + 

k*(max_temp_6h)2 +l*(precip_duration_6h)2 
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Figure 2: Workflow of methods, processing raw weather data into the final most significant 

terms. First by calculating average weather data for every sampling interval, then pruning the 

data by eliminating insignificant terms and eliminating collinearity and finally examining the 

most explanatory terms. 
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This was analyzed in the same Bayesi-

an framework as explained above, and 

only significant terms were further ana-

lyzed (Fig. 2E→F and Fig. 2E→G). All 

analyses were conducted in R (R Core 

Team, 2020) using adapted scrips provid-

ed by Falaschi (2021) and the package 

R2jags (Su & Yajima, 2015). The package 

bayestestR was used to assess significances 

(Makowski et al., 2019). Results were visual-

ized via response curves, plotting the de-

tection probability as a function of one 

variable while keeping all other variables 

at their averages (Fig. 2F). Resulting terms 

were also visualized in a descriptive graph 

as to represent the weather conditions dur-

ing the study period (Fig. S1). 

Additionally, using these remaining 

significant terms, a regression tree was 

constructed in R using the function rpart 

from the package rpart (Therneau et al., 

2019; Fig. 2G). This allows for an easy-to-

follow decision process predicting ex-

pected detection probability based on the 

best explaining variables only. We left 

trees unpruned to examine activity 

patterns in relation to the five terms re-

sulted from the Bayesian model 

(Treilibs et al., 2016).  

Results 

Overall, 238 sampling intervals were 

conducted over 156 days. All sampling 

points with coordinates as well as time 

and date of sighting, and the duration of 

the sampling intervals can be found in 

the supplementary material (Table S2). 

Furthermore, weather conditions during 

the sampling intervals can also be found 

in the supplementary material Fig. S1. 

Weather conditions throughout the 

months of the sampling intervals are for 

the most part quite similar. The general 

trends are similar between the years 

(Fig. S1).  

Pruning of variables 

Pruning of variables revealed 38 can-

didate terms with significant influence 

on the number of lizards found during a 

survey trip after conducting the multi-

ple, Bonferroni corrected Bayesian mod-

els for every set of variables. The result-

ing potentially significant candidate 

terms are found as a list in Fig. 2C and 

details are provided in Table 2. Com-

plete results of the Bayesian models can 

be found in the appendix (Table S3, 

terms with significant influence on num-

ber of lizards found are identified by the 

first column). After calculating the vari-

ance inflation factor to eliminate colline-

arity in the independent variables (Fig. 

2C→D), twelve final variables were left 

for the refined Bayesian model, which 

are listed in Fig. 2D.  

Model analysis 

Using the 12 variables in combination 

(Fig. 2D→E), only five remained signifi-

cant which had a strong effect on detec-

tion probability (Fig. 2E and Fig. 3). 

These terms are the 10-minute averages 

of relative humidity during the observa-

tion interval (rel_humidity_int), precipi-

tation duration within the 24 hours be-

fore the observation interval 

(precip_duration_24h), sunshine dura-

tion within the 3 hours before the obser-

vation interval (sunshine_duration 3h), 

the square of the maximum temperature 

within the 6 hours before the observa-
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tion interval [(max_temp_6h)2], and 

mean wind speed during the observa-

tion interval (mean_wind_speed_int). 

The final formula for the model equa-

tion is:  

 

y = -2.902 - 0.011*global_rad_3h + 

0.054*global_rad_int – 

0.140*mean_wind_speed_int + 

0.012*min_wind_speed_6h + 

0.269*precip_duration_24h – 

0.135*rel_humidity_int + 

0.118*sunshine_duration_12h + 

0.263*sunshine_duration_3h – 

0.183*sunshine_duration_int + 0.031*

(julian_date)2 – 0.113*(max_temp_6h)2 – 

0.058*(precip_duration_6h)2 

The terms that best explain detection 

probability are (max_temp_6h)2, 

mean_wind_speed_int, 

precip_duration_24h, rel_humidity_int, 

and sunshine_duration_3h. Average 10-

minute maximum temperature in the six 

hours before sampling (meaning the aver-

age of the maximum temperature within 

10-minute intervals over the 6 hours prior 

to sampling) showed a squared relation-

ship with detection probability with the 

probability being highest at 20°C (Fig. 4A). 

Mean wind speed and relative humidity 

during the sampling interval show a nega-

tive relationship with detection probabil-

 

Figure 3: Density plots of the posterior dis-

tribution for the terms of the final Bayesian 

Model. Thick vertical lines represent the me-

dian estimated effect for each term, shaded 

areas represent the 80% confidence interval.  

Figure 4: Response curves showing the detection probability as a function of one term if all 

other terms are kept to the average. Dotted lines represent the 95% confidence intervals. Red lines 

indicate the hottest day (julian day 268) and blue lines for an average temperature day (julian day 

183).  
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Variable Model status term estimate std.error pd p_ROPE_bf 

global_rad_3h final linear 0.46 0.06 1 <0.001 

global_rad_int final linear 0.30 0.05 1 <0.001 

julian_date final squared -7.39 1.83 1 <0.001 

max_temp_6h final squared -0.28 0.05 1 <0.001 

mean_wind_speed_int final linear -0.29 0.05 1 <0.001 

min_wind_speed_6h final linear -0.30 0.05 1 <0.001 

precip_duration_24h final linear 0.40 0.08 1 <0.001 

precip_duration_6h final squared -0.39 0.08 1 <0.001 

rel_humidity_int final linear -0.52 0.06 1 <0.001 

sunshine_duration_12h final linear 0.35 0.06 1 <0.001 

sunshine_duration_3h final linear 0.44 0.06 1 <0.001 

sunshine_duration_int final linear 0.39 0.06 1 <0.001 

air_temp_3h canditate squared -0.33 0.06 1 <0.001 

air_temp_5cm_3h canditate squared -0.45 0.06 1 <0.001 

air_temp_5cm_6h canditate squared -0.41 0.06 1 <0.001 

air_temp_5cm_int canditate squared -0.27 0.05 1 <0.001 

air_temp_int canditate squared -0.32 0.06 1 <0.001 

global_rad_12h canditate squared -0.42 0.06 1 <0.001 

global_rad_3h canditate squared -0.37 0.06 1 <0.001 

global_rad_6h canditate linear 0.35 0.06 1 <0.001 

global_rad_6h canditate squared -0.39 0.06 1 <0.001 

max_temp_3h canditate squared -0.40 0.06 1 <0.001 

max_temp_int canditate squared -0.28 0.05 1 <0.001 

mean_max_wind_speed_int canditate linear -0.27 0.05 1 <0.001 

mean_wind_speed_3h canditate linear -0.27 0.04 1 <0.001 

mean_wind_speed_6h canditate linear -0.27 0.04 1 <0.001 

min_temp_3h canditate squared -0.32 0.05 1 <0.001 

min_temp_5cm_3h canditate squared -0.49 0.06 1 <0.001 

min_temp_5cm_6h canditate squared -0.37 0.06 1 <0.001 

min_temp_5cm_int canditate linear 0.34 0.07 1 <0.001 

min_temp_5cm_int canditate squared -0.24 0.05 1 <0.001 

min_temp_int canditate squared -0.28 0.05 1 <0.001 

min_wind_speed_3h canditate linear -0.36 0.04 1 <0.001 

min_wind_speed_int canditate linear -0.36 0.05 1 <0.001 

rel_humidity_3h canditate squared -0.39 0.06 1 <0.001 

rel_humidity_int canditate squared -0.44 0.06 1 <0.001 

sunshine_duration_12h canditate squared -0.35 0.05 1 <0.001 

sunshine_duration_6h canditate linear 0.42 0.06 1 <0.001 

Table 2: Summary statistics of significant candidate variables and terms obtained from Bayesian 

modeling. Model status indicates if the respective candidate variable entered the final model 

(final), while significance in the final model is indicated as bold. For each candidate, the 

term structure is indicated as linear or quadratic and the probability of direction (pd) and the 

Bonferroni corrected significance level are provided (p_ROPE_bf). For the full list of statistical 

results see appendix Table S3. 
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ity, while precipitation duration in the 24 

hours preceding the sampling interval and 

average 10-minute sunshine duration in 

the 3 hours preceding the sampling inter-

val (meaning the average time the sun 

shone during 10-minute intervals over the 

3 hours prior to sampling) show a positive 

relationship (Fig. 4B-E). This suggests that 

lizards are less likely to be found in humid 

and windy conditions while rainy weather 

the day before and sunny weather imme-

diately preceding the collecting period, 

increase the encounter rate.  

Regression tree analysis 

The regression tree (Fig. 5) suggests 

that over the course of the experiment, 

encounter rate was lowest when relative 

Figure 5: Regression tree for encounter rate of L. agilis. Data are partitioned by the five weath-

er variables with the highest explanatory effect. Non-terminal nodes are numbered in boxes 

above the variable names. Terminal nodes are numbered above the boxplots. Terminal nodes are 

labelled with the number of sampling intervals for the corresponding conditions, and display the 

distribution of lizard counts in a boxplot. Variables have the same units as shown in figure 2.   
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humidity during the sampling interval was 

above or equal to 63.7% (Node 2). Contra-

ry, encounter rate was among the highest 

recorded, albeit with lots of variance, when 

relative humidity during sampling interval 

was below 63.7%, mean wind speed dur-

ing sampling interval was smaller than 2.2 

m/s, mean sunshine duration per 10 

minutes in the 3 hours before sampling 

was above 0.086 hours (meaning on aver-

age, the sun shone during 5.16 minutes out 

of 10 minutes during those 3 hours), and 

mean wind speed was larger or equal to 

1.8 m/s (Node 19). Compared to that path 

in the tree, encounter rate is somewhat re-

duced when mean wind speed was instead 

smaller than 1.8 m/s (Node 18), while it 

was greatly reduced when average sun-

shine duration in 10 minutes during the 3 

hours prior was smaller than 0.086 hours 

(Node 16). It was still possible to get high 

encounter rates if mean wind speed was 

larger than 2.2 m/s as long as relative hu-

midity during the sampling interval re-

mained below 63.7%. For this, 10-minute 

average maximum temperature during the 

six hours preceding the sampling interval 

had to remain below 21.1°C and relative 

humidity during the sampling interval had 

to be below 35.5% (Node 14). If the 10-

minute average maximum temperature 

was higher or equal to 21.1 °C, encounter 

rate was low (Node 5). If the 10-minute 

average maximum temperature remained 

below 21.1 °C but relative humidity was 

above or equal to 35.5% there were three 

possibilities depending on sunshine dura-

tion. If 10-minute average sunshine dura-

tion was below 0.011 hours, encounter rate 

was low (Node 8) while for a 10-minute 

average sunshine duration between 0.011 

hours and 0.038 hours, encounter rate was 

higher (Node 13). For a 10-minute average 

sunshine duration above 0.038 hours, en-

counter rate was higher, when the average 

maximum temperature during 10 minutes 

for the 6 hours prior to the sampling inter-

val was higher or equal to 20.6°C (Node 

12) and low when it is below that threshold 

(Node 11).  

Since a regression tree partitions data 

according to the recorded variables, it is 

important to note that encounter rate out-

side the recorded range of these variables, 

can be inferred but has not been consid-

ered by the model. Therefore, an expres-

sion like > X for any variable really means 

a value between X and the largest recorded 

value for the tree. To identify the values, 

where the model ends and speculation be-

gins, the range of the variables used for the 

model have to be considered (Table 3) 

(Complete summary of the regression tree 

can be found in the supplementary materi-

al Text S1). 

Discussion 

Interpreting the best explanatory terms 

The step by step pruning of variables 

revealed that the majority of L. agilis’ de-

tection probability can be explained by five 

Interval maximum minimum unit 

rel_humidity_int 91.9 19.1 % 

precip_duration_24h 6.8 0.0 min 

sunshine_duration_3h 0.167 0.000 h 

max_temp_6h 36.7 6.7 °C 

mean_wind_speed_int 9.6 1.1 m/s 

Table 3: Ranges of the five terms best ex-

plaining the detection probability.  
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weather variables: average maximum tem-

perature six hours prior to the sampling 

interval, mean wind speed and relative 

humidity during the sampling interval, 

mean precipitation duration in the 24 

hours before the sampling interval and 

sunshine duration in the three hours prior 

to the sampling interval. Temperature has 

a squared relationship with detection prob-

ability, peaking around 20°C, while wind 

speed and relative humidity have a nega-

tive linear relationship and precipitation 

duration and sunshine duration have a 

positive linear relationship with detection 

probability.  

The 10-minute average of max tem-

perature over the six hours before the 

sampling period shows, that both tem-

peratures deviating too much from 20°C 

can lead to reduced detection probability 

and hence, reduced activity in L. agilis. 

Lacerta agilis has been shown to avoid 

temperatures below 17°C while spending 

prolonged periods at temperatures above 

23°C, whether active in the shade under 

dense vegetation or inactive in hiding, 

leading to decreased detection probabil-

ity (House et al., 1979; Edgar & Bird, 

2006; Fearnley, 2009). Sand lizards, con-

sequently, have a bimodal activity 

pattern which can on colder days become 

unimodial (Saint Girons, 1976; House et 

al., 1979), sharing this pattern with many 

other European reptiles (Böhme, 1981; 

Grimm et al., 2014; Grimm et al., 2015). 

However, we found maximum tempera-

ture in the six hours proceeding the sam-

pling interval to be a better indicator 

than temperature during the sampling 

interval. We can assume a time lag be-

tween temperature fluctuations and liz-

ard behaviour. According to Blanke 

(1999), L. agilis in lower Saxony, Germany 

start basking at temperatures near 20°C. 

While basking, lizards remain largely 

immobile making them harder to detect, 

explaining the increased detection rate 

due to higher activity some hours after 

temperatures reached that point. Lizards 

in hiding could especially need some 

time to become active as temperature 

fluctuations might take some time to 

reach hiding spots.  

The negative linear relationship be-

tween detection probability and mean 

wind speed and humidity during the sam-

pling interval are what is to be expected 

for a small heliophile lizard (Fearnley, 

2009). Increased humidity is correlated 

with increased wetness in the environment 

and is also related to rain probability. A 

wet environment reduces basking capabili-

ties by convection, as evaporation cooling 

of surfaces and the skin of the lizard oc-

curs. Meanwhile, overcast or rainy skies 

reduce basking capabilities by radiation as 

clouds block the sun. As sand lizards are 

known to bask via those two mechanisms, 

the negative correlation of humidity to de-

tection probability appears to be reasona-

ble. It is possible, that lizards use the op-

portunity to hydrate but forego prolonged 

periods of activity due to the aforemen-

tioned reasons, making them in turn hard 

to detect. Sand lizards have been shown on 

multiple occasions to be mostly active 

when conditions are dry (House et al., 

1979; Kuranova et al., 2003; Čeirâns, 2006). 

Lower activity during humid and overcast 

conditions distinguishes L. agilis from the 

sometimes sympatrically occurring 

Zootaca vivipara, which is more tolerant to 
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those conditions (House et al., 1979; 

Kuranova et al., 2003). Wind on the other 

hand, is rarely mentioned as a contributor 

to lizard activity in other studies. It has 

even been cited specifically as avoidable by 

the lizards (Edgar & Bird, 2006). However, 

high wind speed can make life hard for 

small animals as bushes are rattled, alarm-

ing sounds are masked, and air tempera-

ture tends to sink. As higher wind speeds 

increase convective heat transfer (Porter et 

al., 1973), the animals cool down faster in 

windy conditions leading to more time 

spend basking or hiding. This is especially 

true in wet conditions due to the aforemen-

tioned cooling effects of evaporation. Addi-

tionally, fewer insects might be found dur-

ing higher wind speeds (Williams, 1961). 

High wind speeds have been shown to be 

avoided by another lacertid, Podarcis gua-

darramae in spring, autumn and winter 

(Ortega & Pérez-Mellado, 2016). There is 

also a possibility, that lizards are not affect-

ed by wind speeds directly but instead, 

detection capabilities of researchers could 

be impacted as lizards were best detected 

by the rustling sound of their movements.  

The importance of sunshine duration 

three hours prior the surveys can be ex-

plained by the heliothermic nature of L. 

agilis (Avery, 1979; Fearnley, 2009). The 

more the sun shines, the better for ther-

moregulation, as surfaces heat up, while 

long periods of shaded conditions could 

lead to the lizards cooling out faster and 

taking more breaks to bask and longer to 

heat up (House et al., 1979). Both ways, 

sand lizards’ basking is directly reliant 

on sunlight as both basking by radiation 

and basking by convection need sunlight 

to heat up the lizard or the surfaces it 

basks on. Sand lizards have been ob-

served to have shorter activity periods on 

overcast days, possibly not even emerg-

ing at all (House et al., 1979). As with tem-

perature, there is a time lag between 

achievement of optimal conditions and 

increase of detection probability as liz-

ards need time to heat up. The time lag is 

smaller for sunshine than for tempera-

ture, possibly hinting at the importance 

of sunshine in the activity of the helio-

phile lizard. Lacerta agilis has been 

shown to be more reliant on sunlight 

than Zootoca vivipara who often occurs 

in the same areas (House et al., 1979; 

Kuranova et al., 2003). 

Finally, the positive relationship of de-

tection probability and precipitation dura-

tion 24 hours prior to the sampling interval 

might seem contradictory to our interpre-

tations of relative humidity thus far but 

can be explained by lower physiological 

performance during rainy days. It has been 

shown that during rain, lizards rarely ap-

pear (House et al., 1979; Čeirâns, 2006). So, 

after the rains stopped, lizards could be 

inclined to venture out even in conditions 

they would normally deem sub-optimal to 

make up for lost time. Increased activity 

after rainfall in the 24 hours prior has been 

shown for Podarcis muralis by (Falaschi, 

2021), who also hypothesised the animals 

making up for lost time or suggested, that 

prey insects could be more abundant after 

rainfall according to Williams (1951). 

Regression tree analysis 

Analysis of the regression tree shows 

that lizard activity is not dependent on a 

single variable but rather can be dependent 

on multiple variables. While CART models 
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can deal with a large number of covariates 

and can therefore stand on their own 

(Treilibs et al., 2016), they are helpful in visu-

alising the complex relationship between 

the best explaining variables resulting from 

a data-reduction technique.  

An overall important factor for detec-

tion probability of Lacerta agilis is rela-

tive humidity remaining below 63% as 

higher humidity leads to the lowest en-

counter rate in the study (Fig.6 Node 2). 

Humidity being a limiting factor for sand 

lizard activity has been proven in the 

past as discussed above (House et al., 

1979; Kuranova et al., 2003). Whenever 

humidity remained below that threshold, 

most lizards were encountered on sunny 

days with very light breezes. Under these 

conditions, detection probability is high-

est, but also shows high variance (Node 

19). Alternatively, comparatively high 

encounter rates are also found on more 

windy days as long as temperature was 

below 21 °C six hours prior to sampling 

and either very dry during the sampling 

or at least moderately sunny three hours 

before. The tree reinforces the results of 

the Bayesian model that sunny and dry 

conditions overall increase encounter 

rates. While encounter rates are best dur-

ing low wind speeds, it is possible to en-

counter lots of lizards when wind speeds 

are higher. This may suggest, that the 

negative effects of wind might be offset 

by especially low humidity or sunny 

weather, further reinforcing the im-

portance of dry, sunny weather for sand 

lizards. Evaporation cooling, which was 

discussed above as one adverse effect of 

high wind speeds when combined with 

humid condition would not be a problem 

in dry, sunny weather. As Lacerta agilis 

spends a considerable amount of time 

basking, dry surfaces heated up by sun-

light are important for the animals to fin-

ish basking quickly (Glandt, 1979; 

House et al., 1979; Heym et al., 2013). Fur-

thermore, by basking in spots sheltered 

from the wind, sand lizards can offset 

high wind speeds while wet or overcast 

weather is much harder to escape. Tem-

peratures diverging too far from 20-21 °C 

in the six hours prior to the sampling 

interval led to lower encounter rates 

again reinforcing the results of the Bayes-

ian model.  

In conclusion, the relations from the 

Bayesian model are reflected overall in the 

CART model but might diverge in the cas-

es of wind speed and sunshine duration 

later in the tree, when the algorithm was 

already trained with a subset of the data 

the Bayesian model used. These subsets 

might have different relationships towards 

encounter rate than the original complete 

set of encounters. The absence of precipita-

tion duration during the preceding 24 

hours from the tree suggests that, although 

the positive effect of rainfall in the preced-

ing day has been shown, other variables 

might have a more immediate effect on 

lizard activity, as discussed above. If liz-

ards are making up for lost time as pro-

posed by Falaschi (2021), it is possible that 

rainfall duration in the past 24 hours might 

be more of an additional encouragement 

for lizards, while other factors could im-

pact the lizard's performance more direct-

ly, for example through basking efficiency. 

The CART model is not only a comprehen-

sive decision-making tool but it also high-

lights the interactions between the best 
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explaining variables in a way the Bayesian 

model could not.  

Conclusion 

Overall, our results suggest that L. 

agilis in the Dellbrücker Heide prefer dry and 

sunny weather conditions with tempera-

tures around 20 °C prior to their activity 

phase, and low wind speeds. Additional-

ly, lizards are even more exposed if it 

rained a lot in the 24 hours prior. Our hy-

potheses concerning temperature, sun-

shine duration and humidity were con-

firmed, although we did not expect wind-

speed to play a defining role and did not 

find sunshine intensity among the best 

explaining variables. Our results are in 

line with other studies, especially in 

northern and central Europe, suggesting 

weather dependent activity of Lacerta 

agilis is similar. Bayesian models are a great 

tool to identify the terms that best explain 

encounter rate but fail to comprehensibly 

depict the complex relationship of these 

related weather variables. Regression 

trees therefore, complement the Bayesian 

model by delivering an easy-to-

understand depiction of which relation-

ships lead to which encounter rates. Re-

gression trees of variables that can realis-

tically be predicted by consulting weather 

forecasts, can be a great help in finding 

optimal conditions for field studies or 

predict encounter rate within a popula-

tion. Aside from the post field work ana-

lytical aspects, this method can also be an 

enormous help in studies involving field 

work, especially if field work opportuni-

ties are limited. The combination of meth-

ods between the Bayesian model frame-

work and the CART tree are computa-

tionally fairly straightforward and rely 

solely on the number of encounters dur-

ing fieldwork and the availability of 

weather data for the corresponding time 

periods. The method is also not species or 

habitat specific and works with any visual 

encounter survey, even post-survey. We 

therefore, think it is of great value in con-

servation, monitoring and wildlife man-

agement. While the big disadvantage of 

the method is that it needs a rather large 

sample size, it can be helpful for popula-

tions that are regularly checked on or 

studied over a long period of time, for 

example in the context of long-term moni-

toring projects.  
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