When cryptic diversity blurs the picture: a cautionary tale from Iberian and North African Podarcis wall lizards

ANTIGONI KALIONTZOPOULOU ${ }^{1,2 *} \dagger$, CATARINA PINHO ${ }^{1} \dagger$, D. JAMES HARRIS ${ }^{1}$ and MIGUEL A. CARRETERO ${ }^{1}$
${ }^{1}$ CIBIO / UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
${ }^{2}$ Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA

Received 24 January 2011; revised 1 March 2011; accepted for publication 1 March 2011

Abstract

Evolutionary inference based on molecular phylogenetic methods has profoundly modified the way that we understand biological diversity, unravelling a higher evolutionary diversity than previously considered. An exemplary case of this is the group of Iberian and North African Podarcis wall lizards. More investigated than any other reptile group in Europe, the Podarcis hispanica species complex comprises unexpectedly high levels of phylogenetic diversity and illustrates how the discovery of further cryptic diversity may entangle evolutionary inference. In the present study, we report on the discovery of two new mitochondrial lineages in this species complex, reassess the phylogeny of the group, infer the age of major phylogenetic splits, and provide a detailed description of the geographical distributions of all known mitochondrial DNA lineages. Our data show that the differentiation of major lineages is older than previously considered, in most cases predating the Messinian salinity crisis. The new lineages discovered and their position in the phylogeny of the group profoundly modify previous biogeographical scenarios, clearly showing that the area today corresponding to the south-eastern corner of the Iberian Peninsula is a very important centre of diversification. The dating obtained for the differentiation of the lineages currently inhabiting this area coincides with the complex geological events that took place during the Miocene/Pleistocene transition, supporting the idea that both land movements and dramatic climatic oscillations during that period could be involved. Finally, the discovery of these new lineages, together with the observed distribution patterns, not only further augments the uncertainty associated to our understanding of the evolutionary history of this group of lizards, but also points to new areas of interest for future investigation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103, 779-800.

ADDITIONAL KEYWORDS: biogeography - distribution - Lacertidae - mtDNA - phylogeny - species complex.

INTRODUCTION

The extensive application of molecular phylogenetics for the investigation of biological patterns and processes has profoundly modified the way that we study and understand organismal diversity. Traditionally, organisms were classified into groups based on their

[^0]phenotypic (usually morphological) properties and the relationships between such groups were inferred on the basis of phenotypic similarity. Evolutionary scenarios were then built on these inferences, trying to explain how biological diversity emerges and is distributed across different temporal and geographical scales. The arrival of molecular phylogenetics supplied a new way of inferring evolutionary relationships, with the advantages of a larger number of unambiguous characters available, the ease and
higher speed of data acquisition, and the suitability of molecular data for analysis using transformational models (Scotland, Olmstead \& Bennett, 2003). Among a wide range of applications, the molecular phylogenetics approach is commonly used to infer the degree of evolutionary relatedness between populations, species or higher-order taxa, aiming to describe how biological diversity is distributed geographically (Kidd \& Ritchie, 2006), to relate these distributions to major geological events, and to attempt to understand the evolutionary processes that led to the spatial patterns of biodiversity that we observe today (Wiens \& Donoghue, 2004). Additionally, molecular phylogenetics are also widely used for species delimitation in systematics, preferably in combination with other biological evidence (Wiens \& Servedio, 2000; Wiens, 2007).
In parallel to the above-mentioned direct applications, the use of molecular phylogenetics has also changed our quantitative notion of organismal diversity. The change of framework from phenotypic to molecular characters was naturally followed by the discovery of cases of discordance between both approaches, most commonly towards identifying higher levels of molecular diversity than previously described on a morphological basis. This has led to an explosion of description of cryptic diversity and species complexes, when organisms that are morphologically very similar and thus classified as a single taxonomic unit are shown to be evolutionarily divergent on the basis of molecular evidence (Beheregaray \& Caccone, 2007; Bickford et al., 2007). On the 'cryptic' side, such cases have served as paradigms in the study of morphological evolution, by bringing to light processes previously considered to be scarce or secondary, such as phenotypic convergence, stasis or plasticity (Sáez \& Lozano, 2005; Bickford et al., 2007). On the 'diversity' side, however, we may have failed to fully appreciate the consequences of documenting a mismatch between the human sensory machine and the actual biological units operating. The discovery of unexpected levels of diversity should be treated with caution because it inflates the level of uncertainty for all biological questions considered. However, the description of new cryptic diversity should be taken not as an obstacle but rather as an opportunity to augment our understanding of how species complexes evolve and formulate new hypotheses and detect fascinating areas of interest for future investigation.

The Podarcis hispanica (Steindachner, 1870) species complex (Squamata; Lacertidae) is archetypal of this flux in the perception of biological diversity. This group of wall lizards has been more studied from a phylogenetic and phylogeographical perspective than almost any other reptile group in Europe (Camargo, Sinervo \& Sites, 2010). Traditionally, two species have been recognized in this complex (Arnold
\& Ovenden, 2002): Podarcis bocagei (Seoane, 1884), in westernmost Iberia, and P. hispanica, inhabiting all of the Iberian Peninsula and North Africa. Early studies on mitochondrial (mt)DNA indicated that Iberian and North African Podarcis, with the exception of Podarcis muralis Laurenti, 1768 from Northwest Iberia, form a monophyletic clade (Harris \& Arnold, 1999; Oliverio, Bologna \& Mariottini, 2000). Later assessments of mtDNA variation uncovered high levels of differentiation, which, when combined with morphological differences, led to the elevation of two forms to species level: Podarcis carbonelli Pérez-Mellado, 1981 (Harris \& Sá-Sousa, 2001, 2002; Harris, 2002) and Podarcis atrata (Boscá, 1916) from the Columbretes islands (Castilla et al., 1998a; Sá-Sousa \& Harris, 2002), and further defined the ranges of these species (Harris et al., 2002a). This left P. hispanica as a paraphyletic assemblage of distinct genetic lineages (Harris \& Sá-Sousa, 2002). The inclusion of North African specimens further highlighted genetic diversity in this region (Harris et al., 2002b), leading to the recognition of Podarcis vaucheri (Boulenger 1905) in North Africa and parts of Southern Spain (Busack, Lawson \& Arjo, 2005). Subsequent phylogenetic assessments recovered even more hidden variation: first, a previously undescribed, highly divergent lineage was detected in south-eastern Spain (Pinho, Ferrand \& Harris, 2006) and, subsequently, the assessment of Algerian populations revealed the existence of two new lineages (Lima et al., 2009), thereby increasing the number of 'forms' in North Africa to five.

At the same time as these phylogeographical scenarios were developed using mtDNA sequences, various nuclear makers were used to test for concordance in defining forms. Polymorphic allozyme loci were studied in over 500 individuals and corroborated to a great extent the major splits that are observed in mtDNA analyses (Pinho, Harris \& Ferrand, 2003, 2007a). Similarly, analyses of nuclear DNA sequences indicated that, although considerable ancestral polymorphism persisted, the identified lineages were cohesive and could be considered as incipient species (Pinho, Harris \& Ferrand, 2008). Using a combined morphological and genetic approach, Geniez et al. (2007) redefined and delimited Podarcis hispanica hispanica as a first step towards a taxonomic reassessment of the whole group and, subsequently, Renoult et al. (2010a) recognized Podarcis liolepis (Boulenger 1905) as the form in the Northeast Iberia, synonymizing P. atrata from the Columbretes islands. Despite the general concordance between mtDNA lineages and units delimited using nuclear markers or morphological characters, Pinho et al. (2007a), Pinho et al. (2008), and Renoult et al. (2009) identified cases of discordance and gene flow between forms in
south-east Iberia. In particular, Renoult et al. (2009) analyzed nuclear markers and morphological characters, which were used to identify three evolutionary units within this region, whereas analysis of mtDNA sequences recovered four. It was suggested that this was likely a result of ancient introgression originating from a fourth evolutionary unit, either unsampled or now extinct.

In the present study, we report on the discovery of two additional mtDNA lineages from south-eastern Spain within the P. hispanica species complex. We conduct a reassessment of the phylogenetic relationships of the group following the robust molecular scheme applied by Pinho et al. (2006), including sequences from five mtDNA gene regions. Additionally, we use relaxed molecular clocks to reassess the concordance of divergence between lineages with the known ages of geological events. We combine the results obtained with a detailed description of the geographical distributions of different lineages to re-evaluate previous scenarios of historical biogeography proposed for the group. Finally, we examine the results obtained by recent systematic studies in the light of this new evidence, aiming to evaluate how the discovery of further cryptic diversity may modify the biogeographical, systematic, and evolutionary hypotheses proposed and open the way to a renewed vision of the diversity observed in this group of lizards.

MATERIAL AND METHODS

The present study focuses on the distribution and phylogenetic relationships of mtDNA lineages of Iberian and North African Podarcis. Although the present analyses are based on a single genetic marker, potentially suffering from the limitations that are associated with such an approach (Zhang \& Hewitt, 2003; Galtier et al., 2009), the extensive background information previously obtained for this particular system (i.e. general concordance with nuclear markers: Pinho et al., 2007a, 2008; morphology: Kaliontzopoulou, Carretero \& Llorente, in press; behaviour and ecology: Carretero, 2008) enables us to draw important inferences from this study, regardless of any limitations.

SAMPLING AND COMPILATION OF BIBLIOGRAPHICAL SOURCES

One of the goals of the present study was to more accurately describe the distribution of the various mtDNA lineages described in previous studies. Accordingly, we collected 205 new samples throughout the Iberian Peninsula and North Africa, focusing especially on regions where previous sampling was
limited. Individual lizards were caught by hand, and the tip of the tail removed and stored in 100% ethanol. Specimens were then released at the site of capture. All the new samples used in the present study are described in Table 1. Additionally to the new sampling, we compiled all published data including mtDNA sequences from the Iberian and North African group of Podarcis wall lizards, for which detailed geographical information was available (Castilla et al., 1998a, b; Harris \& Arnold, 1999; Oliverio et al., 2000; Harris \& Sá-Sousa, 2001, 2002; Harris et al., 2002a, b; Carranza, Arnold \& Amat, 2004; Busack et al., 2005; Pinho et al., 2006, 2007a, b, 2008; Renoult, 2006; Sanz-Azkue et al., 2006; Arntzen \& Sá-Sousa, 2007; Lima et al., 2009; Renoult et al., 2009, 2010b), aiming to obtain a complete image of the distribution of existing lineages.

DNA Extraction, mitochondrial DNA SEQUENCING, AND LINEAGE ASSIGNMENT

DNA was extracted using the Qiagen DNeasy tissue kit. Because mtDNA lineages are highly divergent, obtaining the sequence from part of a single mtDNA gene or region is sufficient for the unambiguous assignment of individuals to a known mtDNA lineage. Therefore, as a standard procedure, we amplified and sequenced a portion of the 12 S ribosomal RNA (rRNA) region in at least one of the samples collected from each locality. In a small minority of cases, other genes were sequenced instead of 12 S rRNA to perform this assignment (Table 1).

Although lineage assignment does not require a large amount of sequence data, establishing a wellresolved phylogenetic tree does (Pinho et al., 2006). The preliminary analysis of 12 S rRNA sequences suggested that some samples might belong to previously undescribed mtDNA lineages (see below). To confirm this hypothesis and to evaluate the placement of such new samples in the phylogenetic tree, we additionally obtained partial sequences of four other mitochondrial DNA regions [partial 16S rRNA, control region, NADH dehydrogenase subunit 4 (ND4) and adjacent tRNAs, and cytochrome b] in some of the samples. In addition, we completed the same five-region dataset in three individuals that had been included in a previous study reporting novel lineages in North Africa (Lima et al., 2009), which had been previously analyzed only for 12 S rRNA and ND4. This fiveregion data set was compiled for a total of nine new individuals to combine with the dataset reported by Pinho et al. (2006) and thus obtain a robust and updated view on the phylogeny of mtDNA lineages in this system. In all of the above analyses, primers and amplification conditions strictly followed those given in Pinho et al. (2006), with the exception of the ND4
 can be found in Pinho et al. (2006)

Sample code	Mitochondrial DNA lineage	Locality	Region	Country	Genbank accession numbers				
					12S rRNA	$\begin{aligned} & 16 \mathrm{~S} \\ & \text { rRNA } \end{aligned}$	Control region	Cytochrome b	ND4
3.296	PB	Castro Laboreiro	Viana do Castelo	Portugal	HQ898061				
3.302	PB	Castro Laboreiro	Viana do Castelo	Portugal	HQ898062				
Gi30	PB	Gião	Porto	Portugal					HQ898004
DB8665	PB	Maia	Porto	Portugal	HQ898063				
3.1383	PB	Mindelo	Porto	Portugal	HQ898064				
3.1457	PB	Mindelo	Porto	Portugal	HQ898065				
3.292	PB	Palacios del Compludo	León	Spain	HQ898066				
3.295	PB	Palacios del Compludo	León	Spain	HQ898067				
DB8760	PB	Permedelos, Vila Verde	Braga	Portugal	HQ898068				
3.175	PB	São Mamede do Coronado	Porto	Portugal	HQ898069				
3.211	PB	São Mamede do Coronado	Porto	Portugal	HQ898070				
3.223	PB	Subportela	Viana do Castelo	Portugal	HQ898071				
3.253	PB	Subportela	Viana do Castelo	Portugal	HQ898072				
DB4292	PB	Torneros de la Valdería	León	Spain	HQ898073				
4.159	PC	El Acebuche	Huelva	Spain	HQ898074				
4.176	PC	El Acebuche	Huelva	Spain	HQ898075				
DB9670	PC	S. Jacinto	Aveiro	Portugal	HQ898076				
5.143	PH1A	Alvão NP, next to dumm	Vila Real	Portugal	HQ898077				
DB8653	PH1A	Barrocal do Douro	Bragança	Portugal	HQ898078				
DB8409	PH1A	Celanova	Ourense	Spain	HQ898079				
DB8671	PH1A	Chavães	Porto	Portugal	HQ898080				
DB8398	PH1A	Chelos, Gaia	Porto	Portugal	HQ898081				
DB8609	PH1A	Cidadelhe	Guarda	Portugal	HQ898082				
DB1734	PH1A	Crestuma Castle	Porto	Portugal	HQ898083				
DB1730	PH1A	Fornillos (de Aliste)	Zamora	Spain	HQ898084				
DB8322	PH1A	Gerês	Braga	Portugal	HQ898085				
5.247	PH1A	Ledesma	Salamanca	Spain	HQ898086				
5.259	PH1A	Ledesma	Salamanca	Spain	HQ898087				
DB8669	PH1A	Lourosa	Porto	Portugal	HQ898088				
DB8411	PH1A	Murça	Vila Real	Portugal	HQ898089				
DB1751	PH1A	Near Sta. Eulalia	Zamora	Spain	HQ898090				
DB1763	PH1A	Near Sta. Eulalia	Zamora	Spain	HQ898091				
DB8399	PH1A	Oliveira do Hospital	Coimbra	Portugal					HQ898005

HQ898054

Rio Casares	León
Rio Casares	León
Rio Negro，Peque	Zamora
Serra d＇Arga	Viana do Castelo
Sobreira（Chaves）	Vila Real
Sta．Eulalia	Zamora
Sto．Estevão	Vila Real
Tudera	Zamora
Tudera	Zamora
Vale do Rossim	Serra da Estrela
Vila Chã（Vale de Cambra）	Viana do Castelo
Vinhais	Bragança
Zamora	Zamora
Alba de Tormes	Salamanca
Arévalo	Ávila
Bejar	Salamanca
Ciudad Rodrigo	Salamanca
Ciudad Rodrigo	Salamanca
El Piornal	Cáceres
Las Ventas c／Peña Aguilera	Toledo
Torrejon de la Calzada	Madrid
Albacete city	Albacete
Almoster	Santarém
Area Recreativa de Gil Cobo	Jaén
Area Recreativa de Gil Cobo	Jaén
Area Recreativa de Gil Cobo 2	Jaén
Area Recreativa de los Estrechos	Toledo
Arroyo Brezoso	Castilla la Mancha
Arroyo de la Luz	Cáceres
Arroyo del Chorro－ Los Navalucillos	Toledo
Balazote	Albacete
Casar de Cáceres	Cáceres
Castanheira de Pera	Leiria
Cobeta	Guadalajara
Cornalvo NP	Badajoz

出出出出出出出出出出出		密思思䛼	思	$\underset{\sim}{\underset{\sim}{*}}$	思	N N	N N N N N	
					$\begin{aligned} & \text { og } \\ & \stackrel{1}{\wedge} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\ominus}{e} \\ & \stackrel{y y}{\mid} \end{aligned}$		

Table 1. Continued

Sample code	Mitochondrial DNA lineage	Locality	Region	Country	Genbank accession numbers				
					12S rRNA	$\begin{aligned} & \text { 16S } \\ & \text { rRNA } \end{aligned}$	Control region	Cytochrome b	ND4
DB1776	PH2	Cortijo de Angelita	Jaén	Spain	HQ898126				
DB1769	PH2	Cortijo de los Petrolos	Jaén	Spain	HQ898127				
DB1778	PH2	Cortijo de los Petrolos	Jaén	Spain	HQ898128				
DB1783	PH2	Cortijo El Maguillo	Jaén	Spain	HQ898129				
DB1736	PH2	Cueva del Santillo	Jaén	Spain	HQ898130				
PH87	PH2	El Chorro (Cabañeros NP)	Toledo	Spain	HQ898131				
DB9676	PH2	El Laminador, Sierra de Aljubar	Albacete	Spain	HQ898132				
DB1837	PH2	Fuente de Cueva Ahumada	Albacete	Spain	HQ898133				
DB1787	PH2	Fuente del Macho	Jaén	Spain	HQ898134				
PH55	PH2	Fuente Nueva Villarubia de Santiago	Toledo	Spain	HQ898135				
PH53	PH2	Fuente Vieja Villarubia de Santiago	Toledo	Spain	HQ898136				
PH89	PH2	Fuertescusa	Cuenca	Spain	HQ898137				
PH95	PH2	La Roda	Albacete	Spain	HQ898138				
DB1862	PH2	Laguna de Arroyofrío	Albacete	Spain	HQ898139				
PH91	PH2	Lagunas de la Ruidera	Albacete	Spain	HQ898140				
DB8905	PH2	Louriçal	Leiria	Portugal					HQ898006
DB2641	PH2	Mazarete	Guadalajara	Spain	HQ898141				
DB9607	PH2	Monte Real	Leiria	Portugal	HQ898142				
PH66	PH2	Ocaña	Toledo	Spain	HQ898143				
DB9603	PH2	Olmeda de Cobeta	Guadalajara	Spain	HQ898144				
DB8904	PH2	Ourém	Santarém	Portugal					HQ898007
DB1876	PH2	Palacio Gosalvez, Villalgordo del Júca	Albacete	Spain	HQ898145				
DB1877	PH2	Palacio Gosalvez, Villalgordo del Júca	Albacete	Spain	HQ898146				
DB1781	PH2	Peña del Olivar	Jaén	Spain	HQ898147				
DB1828	PH2	Piedra de los Endrinales	Albacete	Spain	HQ898148				
DB2960	PH2	Rio Borosa (La Iruela)	Jaén	Spain	HQ898149				

Toledo
Toledo
Guadalajara
Albacete
Leiria
Albacete
Jaén

Jaén
Jaén
Badajoz
Córdoba
Córdoba
Jaén
Albacete
Albacete
Albacete
Albacete
Albacete
Alicante
Albacete
Albacete
Murcia
Murcia
Tizi Ouzou
Tizi Ouzou
Batna
Murcia
Murcia
Murcia
Almeria
Almeria
Almeria
Rio Estena Hontanar
Rio Frio－Sevilleja de
la Jara
Río Linares－Riba de
Saelices
Riopar el Viejo
S．Pedro de Moel
Saelices
Sierra de Segura， 5 km
W of Embalse del
Tranco
SW of Embalse del
Tranco
SW of Embalse del
Tranco
Valencia del Ventoso
Villanueva de Córdoba
Villanueva de Córdoba
Virgen de la Cabeza，
Andujar
Camino del Tobalejo
Cañada del Provencio
Cañada del Provencio
El Pardal
Montealegre del
Castillo
Sierra de Callosa del
Segura
Sierra de la Oliva
Sierra de la Oliva
Sierra de la Pila
Sierra de la Pila
Azazga
Azazga
Hamla
Caravaca de la Cruz
Cartagena
Cartagena
Embalse de La
Pedrera
Embalse de La
Pedrera
Láujar de Andarax

N N N N N	埌		盗	胥			空			馬
	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \text { on } \\ & \stackrel{\rightharpoonup}{a} \end{aligned}$		$\begin{aligned} & \text { LO } \\ & \stackrel{\infty}{N} \\ & \text { N } \end{aligned}$				0 0 0 0		$\begin{aligned} & \stackrel{\circ}{+} \\ & \text { O } \\ & \end{aligned}$	$\begin{aligned} & \text { 弋甘 } \\ & \text { O } \\ & \text { م⿵ } \end{aligned}$

Table 1. Continued

Sample code	Mitochondrial DNA lineage	Locality	Region	Country	Genbank accession numbers				
					12S rRNA	$\begin{aligned} & \text { 16S } \\ & \text { rRNA } \end{aligned}$	Control region	Cytochrome b	ND4
DB3851	PHGal	Rambla del Cañar-Cartagena	Murcia	Spain	HQ898179				
DB2961	PHGal	Rio Castril river source	Granada	Spain	HQ898180				
9.10	PHGal	Sierra de Espuña	Murcia	Spain	HQ898181				
9.7	PHGal	Sierra de Espuña	Murcia	Spain	HQ898182				
DB1663	PHJS	Road to Jbel Siroua	Taroudannt	Morocco	HQ898183				
DB11031	PHJS	Tizi-n'-Melloul	Ouarzazate	Morocco					HQ898009
DB1791	PHSS	500 m from Los Negros Camping	Jaén	Spain	HQ898194				
DB1879	PHSS	Barranco de Guadalentín	Jaén	Spain	HQ898195				
DB1899	PHSS	Barranco de Guadalentín	Jaén	Spain	HQ898196				
9.22	PHSS	Boniche	Cuenca	Spain	HQ898197				
DB8646	PHSS	Bunyol	Valencia	Spain	HQ898198				
DB1834	PHSS	Calar de Mundo	Albacete	Spain	HQ898199				
9.8	PHSS	Castillo de la Calahora	Granada	Spain	HQ898200				
10.45	PHSS	Cazorla, Nava de San Pedro	Jaén	Spain	HQ898201				
10.53	PHSS	Cazorla, Nava de San Pedro	Jaén	Spain	HQ898202				
CU	PHSS	Ciudad Encantada	Cuenca	Spain	HQ898203				
DB8630	PHSS	Cortijo Becerra, Guadix	Granada	Spain	HQ898204				
DB1887	PHSS	Fte la Reina	Jaén	Spain	HQ898205				
DB3167	PHSS	Fte la Reina	Jaén	Spain	HQ898206				
DB1898	PHSS	Fuente de la Garganta	Jaén	Spain	HQ898207				
DB1735	PHSS	Guadalquivir river source	Jaén	Spain	HQ898208				
DB1748	PHSS	Guadalquivir river source	Jaén	Spain	HQ898209				
B2	PHSS	La Casella, Alzira	Valencia	Spain	HQ898210				
DB3053	PHSS	Pico Cabañas	Jaén	Spain	HQ898211				
DB8628	PHSS	Puebla del Salvador	Cuenca	Spain	HQ898212				
DB3857	PHSS	Revolcadores	Murcia	Spain	HQ898213				

Jaén
Murcia
Valencia
Valencia
Jaén
Valencia
Valencia
Jendouba
Jendouba
Teboursouk
Teboursouk
Girona
Guadalajara
Girona
Aragón
Burgos
Barcelona
Zamora
Huesca
Lleida
Tarragona
Al Haouz
Taza
Ceuta
Ifrane
Al Haouz
Taroudannt
Al Haouz
Taroudannt
Boulemane
Errachidia
Taroudannt
Taroudannt
Jaén
Jaén

Rio Madera
Sierra Espuña－Zona
Pozos de Nieve
St Esperit，Gilet
Sagunt
St Esperit，Gilet
Sagunt
Venta Benito
Xátiva
Xátiva
Cap Negro
Feidja NP
Jbel Goraa
Jbel Goraa
Aiguamolls del
Empordà
Alcolea del Pinar
Bordils
Calomarde
Castrillo de la Vega
Les Solans
Monasterio de
Moreruela
Near Sopeira
Rio Segre
Torredembarra
Mines
Beni Amint
Ceuta
Ifrane
Imlil
Jebel Owlime
Road Tadert／Tizin
Tichka
road to Jbel Siroua
Talzemt
Tislit Lake
Tizi－n－Tleta
Tizi－n－Tleta
Alcalá la Real
Alcalá la Real

$\begin{aligned} & \text { 気 } \\ & \text { 至 } \end{aligned}$	$\begin{aligned} & \text { 设 } \\ & \text { 落 } \end{aligned}$	$\begin{aligned} & \text { 號 } \end{aligned}$				
	๓	$\underset{\sim}{\infty}$				

Table 1. Continued

Sample code	Mitochondrial DNA lineage	Locality	Region	Country	Genbank accession numbers				
					12S rRNA	$\begin{aligned} & \text { 16S } \\ & \text { rRNA } \end{aligned}$	Control region	Cytochrome b	ND4
DB1208	PVSCSp	Between Benalua de las Villas and Iznalloz	Jaén	Spain					HQ907941
8.104	PVSCSp	Jaén city	Jaén	Spain					HQ907942
DB1873	PVSCSp	Linares	Jaén	Spain	HQ898233				
DB2863	PVSCSp	Linares	Jaén	Spain	HQ898234				
DB2869	PVSCSp	Linares	Jaén	Spain	HQ898235				
DB1754	PVSCSp	Pradollano, Sierra Nevada	Granada	Spain	HQ898236				
8.59	PVSCSp	Santa Ana	Jaén	Spain	HQ898237				
DB1811	PVSSp	Bonanza	Cádiz	Spain	HQ898223				
DB51	PVSSp	Castillo de la Duquesa	Cádiz	Spain	HQ898224				
DB1251	PVSSp	Castro del Rio	Córdoba	Spain					HQ898014
DB1254	PVSSp	Castro del Rio	Córdoba	Spain					HQ898015
8.119	PVSSp	Córdoba city	Córdoba	Spain					HQ898016
DB1380	PVSSp	Granada city	Granada	Spain					HQ898017
DB1874	PVSSp	Linares	Jaén	Spain	HQ898225	HQ898058	HQ898048	HQ898039	HQ898018
8.26	PVSSp	Matalascañas	Huelva	Spain					HQ898019
DB446	PVSSp	Parque Nacional Los Alcornocales	Cádiz	Spain	HQ898226				
8.122	PVSSp	Peñarroya-Pueblonuevo	Córdoba	Spain					HQ898020
8.69	PVSSp	Playa de la Víbora	Málaga	Spain					HQ898021
DB3871	PVSSp	Sanlucar La Mayor	Sevilla	Spain	HQ898227				
DB1390	PVSSp	Sierra de Aljibe	Cádiz	Spain					HQ898022
8.57	PVSSp	Torcal de Antequera	Málaga	Spain					HQ898023

[^1]region in sample 9.60, belonging to a lineage detected in south-eastern Spain ('Galera' lineage: Pinho et al., 2007a, 2008), P. hispanicus sensu Renoult et al. (2009)]. To avoid amplification of a nuclear pseudogene similar to ND4, which is known to exist in this lineage (Pinho et al., 2006), we used the primers GalND4F and GalND4R (Pinho et al., 2008), with similar conditions to those used for standard amplification of the ND4 locus, both for amplification and sequencing. Polymerase chain reaction products were purified enzymatically and sequenced in an ABI 3130xl Genetic Analyzer (Applied Biosystems). All new sequences have been deposited in GenBank (accession numbers are provided in Table 1).

Sequences were aligned manually using BIOEDIT, version 7.0.5.3 (Hall, 1999). As a general procedure, sequences were assigned to a particular lineage by observing clustering patterns in a Neighbour-joining tree (Saitou \& Nei, 1987) constructed in MEGA, version 4.1 (Tamura et al., 2007).

PHYLOGENETIC ANALYSIS

Although most samples examined were easily assigned to one of the previously known lineages based on a diagnostic portion of the 12 S rRNA, the survey also revealed divergent samples from previously unsampled geographical areas. These were further investigated using partial sequences of a total of five mitochondrial gene regions (Pinho et al., 2006). Because the ND4 sequence for sample 9.60 was significantly shorter than the other samples' (as a result of its amplification with an internal set of primers), we excluded from the alignment the tRNAs that are adjacent to the ND4 gene. The final alignment thus included a total of 2291 bp (corresponding to 383 bp from 12 S rRNA, 510 bp from 16 S rRNA, 418 bp from the control region, 306 bp from cytochrome b, and 675 bp from ND4).

For the five-loci dataset, comprising a total of 41 individuals, namely the 32 individuals analyzed by Pinho et al. (2006) plus the nine newly sequenced samples, we used three different approaches to investigate evolutionary relationships: maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI). For MP analyses, sequences were imported into PAUP* 4.0b10 (Swofford, 2002). Ten heuristic searches were performed using random sequence addition and tree bisection - recognition branch swapping. Gaps were treated as a fifth state. Nodal support was assessed by nonparametric bootstrapping (Felsenstein, 1985) with 1000 pseudoreplicates.

ML analyses (Felsenstein, 1981) were conducted using the method implemented in GARLI, version 0.96 (Zwickl, 2006), which simultaneously searches
parameter space for tree topology, branch lengths, and substitution model parameters. On the basis of preliminary analyses using the Akaike information criterion in MODELTEST, version 3.06 (Posada \& Crandall, 1998), we allowed the software to estimate parameters within the general time reversible model of sequence evolution, using a discrete approximation to the gamma model of among-site rate variation (with four rate categories) and an estimate of the proportion of invariant sites. GARLI runs were automatically terminated when no new significantly better scoring topology was encountered in 50000 generations of the Markov chain Monte Carlo. Ten replicate searches were performed. Bootstrap support (Felsenstein, 1985) was evaluated by performing 1000 pseudoreplicates under the same conditions. Bayesian phylogenetic analyses were performed using MrBAYES, version 3.1.2 (Huelsenbeck \& Ronquist, 2001). Because the choice of an appropriate partition strategy is expected to influence the outcome of phylogenetic estimates (Brown \& Lemmon, 2007), we performed three separate runs: one assumed the same substitution model for the complete data set (unpartitioned analysis), and the remaining two employed different partition strategies, allowing for substitution models to vary among distinct character sets: (1) partition in the five mitochondrial segments and (2) partition in the five mitochondrial segments, plus each of the three codon positions of the two protein-coding genes (cytochrome b and ND4). Each run included two independent replicates. Runs started from randomly-generated trees and were sampled every 1000 generations along the Markov chain. Runs were allowed to proceed until convergence to the stationary distribution was accomplished and sufficient samples had been obtained after stationarity (between 20 and 30 million steps, depending on the run). This was assessed using AWTY (Wilgenbusch, Warren \& Swofford, 2004; Nylander et al., 2008), which provides, among other measures, plots of the cumulative posterior probabilities for the different clades. Trees sampled before these measures stabilized (corresponding to $10-12$ million first iterations along the Markov chain, depending on the partitioning strategy) were discarded as burn-in. The two sets of post-burn-in trees sampled from the replicate runs were then combined. Sensu Brown \& Lemmon (2007), we used Bayes factors to choose the most appropriate partitioning strategy to perform phylogenetic inference.

DIVERGENCE TIME ESTIMATES

Inferring the timing of splitting events in Iberian and North African wall lizards has been complicated by the lack of suitable molecular clock calibrations. Typi-
cally, these inferences have relied on evolutionary rates adapted from studies in other reptiles (Harris et al., 2002b; Pinho et al., 2006); hence, they correspond to approximations. Ideally, one should use instead a specific calibration for the system in hand, based on a paleogeographical event suspected to have caused diversification. In the case of Iberian and North African wall lizards, one could in principle take advantage of the fact that the tectonic history of the western Mediterranean is fairly well-known (Rosembaum, Lister \& Duboz, 2002). However, the distribution of genetic variation around the Strait of Gibraltar in wall lizards is not easily explained and appears to have been driven by dispersal as much as by vicariance (Harris et al., 2002b; Pinho et al., 2006), making the patterns difficult to interpret and the use of such events to calibrate a molecular clock highly problematic. However, this problem does not appear to affect other groups of wall lizards, namely those that differentiated on islands (Poulakakis et al., 2005; Brown et al., 2008). For example, Poulakakis et al. (2005) used the isolation of Crete from the Peloponnesus [reflected in the differentiation of Podarcis cretensis (Wettstein, 1952) from Podarcis peloponnesiaca (Bibron and Bory, 1833)], which occurred at the end of the Messinian Salinity Crisis (MSC), as a calibration point. Brown et al. (2008) considered that the same event caused differentiation between the two Balearic lizards Podarcis pityusensis (Boscá, 1883) and Podarcis lilfordi (Günter, 1874) and also used this event to calibrate their divergence time estimates.

Because our data set partially overlaps with those used in the above mentioned studies, we were able to use the same calibration points to infer divergence times in Iberian and North African Podarcis. Accordingly, we retrieved from GenBank, cytochrome b and 16S sequences from clades B3 and B5 from Poulakakis et al. (2005) [belonging to P. peloponnesiaca and P. cretensis, respectively; although note that in that publication P. cretensis was still referred to as a clade of Podarcis erhardii (Bedriaga, 1882)]. Because the phylogenetic position of Podarcis levendis Lymberakis et al. 2008, from the island of Pori (clade B4 in Poulakakis et al., (2005) appears dubious (Lymberakis et al., 2008), we did not include this clade in our analysis. Similarly, we obtained all P. pityusensis and P. lilfordi cytochrome b, control region, and 12 S rRNA sequences from Brown et al. (2008). A complete list of the used sequences' accession numbers is supplied in the Supporting information (Table S1). These sequences were then used to build three distinct datasets: (1) INAG (including cytochrome b and 16 S sequences from Iberian, North African, and Greek Podarcis - 801 bp); (2) INAB (including the common portions of the cytochrome $b, 12 \mathrm{~S}$ and control
region from Iberian, North African, and Balearic Podarcis - 1062 bp); and (3) ALL (including only the cytochrome b from the three groups of lizards - 306 bp).

These datasets were analyzed using BEAST, version 1.5.3 (Drummond \& Rambaut, 2007). This software implements a Bayesian Markov chain Monte Carlo method to perform a number of demographical and phylogenetic inferences, using a wide array of evolutionary and mutation models. For these analyses, we first defined sets of taxa corresponding to the clades of interest. The analyses allowed for different substitution models for different character sets (for the INAG and INAB analyses) and started from randomlygenerated trees. We used the Yule process speciation tree prior, which is more appropriate for between species sequence divergence, throughout the analyses. Divergence times were calculated assuming relaxed molecular clocks, for which an uncorrelated lognormal model was applied (Drummond et al., 2006), imposing a prior on the time to most recent common ancestor (TMRCA) of the 'Greek' (P. cretensis $+P$. peloponnesiaca) and 'Balearic' (P. lilfordi $+P$. pityusensis) clades coinciding with the end of the Messinian salinity crisis. The refilling of the Mediterranean was a rapid event (García-Castellanos et al., 2009), such that it could be considered as a point in geological time. However, because the most precise estimate for the dating of this event is 5.33 Mya (Krijgsman et al., 1999), we used a uniform distribution in the range 5.325-5.335 Mya as the prior for these TMRCA. After running several preliminary, shorter analyses to optimize running conditions and evaluate convergence of different runs to similar output values, BEAST was run for 100 million steps for each data set, with genealogies sampled every 1000th generation. TRACER (Rambaut \& Drummond, 2007), version 1.4 was used to visualize the results and assess if the effective sample size of estimated parameters was satisfactory. We discarded the initial 10% of sampled trees as burn-in.

RESULTS

Estimates of relationships based on FIVE MTDNA REGIONS

Of the 2291 characters of the alignment, 612 are polymorphic and 557 parsimony informative. Given our efforts to avoid known nuclear pseudogenes in this group of lizards and the absence of double peaks, premature stop codons, nucleotide composition and substitution pattern abnormalities (sensu Harris, 2002 and Podnar et al., 2007) in the two proteincoding gene sequences, we are confident that our sequences represent true mitochondrial DNA instead of nuclear pseudogenes.

Figure 1. Estimates of relationships between Iberian and North African Podarcis based on maximum likelihood analyses of 2291 bp of mitochondrial DNA. This tree is rooted using Podarcis muralis. Bayesian posterior probabilities are given above nodes; maximum likelihood and maximum parsimony bootstraps, respectively, are below the nodes. When all three were identical, one value is given in a box. -, bootstrap values lower than 50%. An asterisk (*) indicates branches where different methods yielded different topologies. Underlined names indicate the two recently-discovered lineages. Note that branch lengths represent substitution rate, not geological time; for the estimated age of nodes under different calibration strategies, see Table 2.

The ML tree obtained using GARLI is depicted in Figure 1. Because the results obtained with GARLI were highly consistent across the multiple replicate runs performed, it is unlikely that the recovered
estimate of relationships depicts trapping in local optima. Furthermore, analyses based on Bayesian inference recovered exactly the same tree topology as ML analyses, independently of the partition strategy;

Figure 2. Geographical distributions of the 16 mtDNA lineages of the Podarcis hispanica species complex, based on a total of 362 locality data. Colours and symbols correspond to those in Fig. 1. Black crosses indicate localities of syntopy between different lineages, specifically between Podarcis bocagei and P. hispanica type 1A (1); P. bocagei and Podarcis carbonelli (2); P. carbonelli and P. hispanica type 1A (3); P. carbonelli and P. hispanica type 2 (4); P. carbonelli and P. hispanica type 1B (5); Podarcis vaucheri southern Spain and P. vaucheri southern-central Spain (6); and P. hispanica s.s. and P. hispanica Galera type (7).
nevertheless, not unexpectedly, Bayesian factors analyses showed that the partition into the five mtDNA regions plus distinct codon positions in the protein coding genes was the most appropriate for the data, and the post-burn-in trees resulting from this run were therefore used to obtain an estimate of the phylogeny and compute posterior probabilities. Both ML and BI estimates of the phylogeny are largely concordant with previous assessments of the mtDNA tree in Iberian and North African Podarcis (Pinho et al., 2006; Lima et al., 2009). Apart from the introduction of previously unknown lineages, the relationships between forms remain virtually unchanged. Three main clades can be identified: one clade that appears as sister to all other Iberian and North African forms (clade N; Fig. 1) encompasses P. liolepis and the 'Galera' form from Pinho et al. (2006) (referred to as the 'hispanicus' clade in Renoult et al., 2009); another clade includes all forms from western and central Iberia (clade L); finally, a third clade includes forms inhabiting both North Africa and the
south-eastern region of Iberian Peninsula (clade H). It is within the latter that the two newly-discovered lineages fall.

The first of these lineages (depicted as ' P. hispanica Albacete-Murcia' in Fig. 1) appears as a sister taxon to P. hispanica s.s. (sensu Pinho et al., 2006; 'Valencia' lineage in Renoult et al., 2009) and exhibits, on average, approximately 9.5% uncorrected distance in cytochrome b from the latter. This lineage was detected in only seven localities and is geographically associated with the area of confluence between the Spanish provinces of Albacete, Alicante, and Murcia (see below and also Fig. 2). A second, previously undetected lineage, sampled from southern Spain, appears as sister to all P. vaucheri (depicted as P. vaucheri 'South Central Spain' in Fig. 1) and is at present known from six different localities from the Granada and Jaén provinces. This lineage shows, on average, a 9.4% uncorrected distance from its sister taxon (clade A, composed by both North African and south-eastern Spanish P. vaucheri).

MP analyses recovered the same overall topology as depicted above, with the exception of the relative relationships between clades H, L, and N (instead of a sister taxon relationship between clades H and L , MP analyses recovered a group encompassing clades H and N).

DAting the major splits

The means and 95% high posterior density (HPD) intervals for the various clades in the tree are shown in Table 2. The 95% HPD for the various estimates overlap between the three dating strategies; however, the inferred mean of the TMRCA for each clade varies according to the calibration employed, especially for those MRCA that are more distant in time. Estimates based on the separation between P. peloponnesiaca and P. cretensis (INAG) are generally older than those based on the divergence between P. pityusensis and P. lilfordi (INAB), although both differentiation episodes have been described to happen as a consequence of the same event: the end of the MSC. The calibration strategy based on both events (ALL) suggests in general intermediate values.

Distribution of lineages of Iberian and North African Podarcis

The detailed geographical survey conducted resulted in the assignment of 205 samples (Table 1) to previously or newly-identified lineages of the P. hispanica species complex (Pinho et al., 2006). This, together with a review of previously published data, allowed the compilation of 362 locality data that provide a thorough description of the distribution of different mitochondrial lineages in the Iberian Peninsula and North Africa (Fig. 2) (a detailed table of all compiled locality data is available from the authors upon request). The number of records per lineage ranges from 1 (in the case of the lineage from Azazga, in Algeria, known from a single locality) to 67 (in the widespread P. hispanica type 2), with P. hispanica s.s. $(N=45)$, P. vaucheri from Morocco $(N=42)$, P. hispanica type $1 \mathrm{~A}(N=40)$, and P. bocagei $(N=39)$ also sampled in detail. The reduced number of localities comprising records of some forms reflects their geographically restricted nature coupled with their recent detection.

DISCUSSION

In the present study, we obtained a new estimate of the Iberian and North African Podarcis phylogeny, which fully coincides with previous estimates considering the already known lineages (Pinho et al., 2006; Lima et al., 2009) and includes two new mtDNA

Table 2. Estimates of the times to the most recent common ancestor (in million years) of selected clades of Iberian and North African wall lizards, calculated using a relaxed molecular clock implemented in BEAST, based on different molecular clock calibration strategies

Clade	Calibration strategy		
	INAG	INAB	ALL
A	2.65	2.30	2.69
	1.51-3.89	1.39-3.31	1.31-4.26
B	4.97	4.06	4.01
	3.10-7.06	2.53-5.72	2.06-6.15
C	3.36	2.88	3.33
	1.99-4.90	1.69-4.14	1.38-5.50
D	5.26	3.05	3.64
	3.39-7.26	1.90-4.30	1.71-5.81
E	5.27	4.14	4.09
	3.38-7.24	2.65-5.74	2.02-6.36
F	7.61	6.85	6.56
	5.19-10.34	4.67-9.20	3.66-9.73
G	6.08	4.86	4.27
	3.49-8.79	2.63-8.08	1.46-7.52
H	9.44	6.99	7.00
	6.38-12.63	4.75-9.40	4.05-10.28
I	6.19	3.81	3.94
	3.76-8.87	2.34-5.42	1.87-6.30
J	5.97	4.45	5.33
	3.70-8.48	2.63-6.43	2.44-8.47
K	6.05	5.17	5.64
	3.86-8.62	3.36-7.19	2.84-8.74
L	8.03	6.37	6.38
	5.36-11.00	4.28-8.63	3.48-9.48
M	11.71	8.98	10.11
	8.02-15.86	6.25-12.02	5.83-14.55
N	10.09	9.15	9.69
	6.21-14.36	5.95-12.66	4.33-14.94
O	13.94	9.44	10.41
	9.85-18.43	6.52-12.66	6.07-15.04

Calibration strategies: INAG: based on cytochrome b and 16 S rRNA sequences and calibrating with the separation of Podarcis peloponnesiaca and Podarcis cretensis (approximately 5.33 Mya; Poulakakis et al., 2005); INAB: based on cytochrome $b, 12 \mathrm{~S}$ rRNA, and control region and calibrating with the separation of Podarcis lilfordi and Podarcis pityusensis (approximately 5.33 Mya; Brown et al., 2008); ALL: based on cytochrome b sequences only and including the two above-mentioned calibration points. 95\% high posterior density limits are shown below the mean values. Clades correspond to those in Fig. 1. Details on the calibration strategies are provided in the text.
lineages, whose position in the known phylogeny is recovered with a high support (Fig. 1). The discovery of these two additional mtDNA lineages within the Iberian and North African group of Podarcis wall
lizards has important implications for the biogeographical scenarios related to the evolutionary history of the group, and clearly illustrates the profound effect that unsampled cryptic diversity may have on paleobiogeographical inference.

Polarity and timing of colonization events around the Strait of Gibraltar

The Strait of Gibraltar is a known centre of diversity for numerous animal taxa, functioning either as a vicariant agent or as a transmarine dispersal corridor. Curiously, for herpetofaunal species, the effectiveness of the Strait as a barrier to gene flow widely varies among taxa (Busack, 1986; Carranza \& Arnold, 2004; Carranza, Arnold \& Pleguezuelos, 2006a; Carranza et al., 2006b; Fonseca et al., 2009). In the case of Podarcis, the role of the Strait of Gibraltar in shaping diversity has long been an intriguing centre of attention. From early examinations of phylogenetic variation in the area, it became clear that, to explain the patterns of diversity around the Strait, one would need to invoke two independent events (either two transmarine dispersal episodes or one such episode coupled with vicariance promoted by the opening of the Strait of Gibraltar or other geological event). Initially, it was proposed that two transmarine dispersal events across the Strait, at 3.5 Mya (by the ancestral of the Tunisian and Southern Moroccan forms) and 1.5 Mya (by P. vaucheri), both from the Iberian Peninsula to North Africa, were responsible for the observed patterns of variation (Harris et al., 2002b). With the refinement of the knowledge of mtDNA phylogenetic relationships around the area (Pinho et al., 2006), it was suggested that an additional scenario, that of a vicariant separation (e.g. caused by the opening of the Strait) followed by a colonization of P. vaucheri from North Africa into the Iberian Peninsula, could also not be discarded. Indeed, based on dating estimates which placed the separation between P. hispanica s.s. and the other forms in the clade approximately 5.5 Mya , at approximately the end of the MSC, this second hypothesis appeared to be favoured, although evidence was obviously circumstantial (Pinho et al., 2006). A major difficulty in such analyses was that, because P. vaucheri groups from both sides of the Strait were consistently recovered as monophyletic units, the polarity of this colonization event could not be directly inferred from the patterns of genetic variation; therefore, this forced researchers to rely on other sources of evidence (such as dating estimates) to make biogeographical inferences. The newly-discovered lineage of P. vaucheri from the area of Granada and Jaén, recovered as a sister taxon to all other P. vaucheri in phylogenetic analyses, renders Spanish P. vaucheri as
a paraphyletic group, therefore presently providing a clear indication that P. vaucheri invaded North Africa from the Iberian Peninsula and not the other way around. However, given the instability of previous inferences, we must also consider the possibility of further, until now undiscovered, cryptic lineages being described in the future, a fact that may again modify the proposed biogeographical scenario. This is particularly true, for example, if new Podarcis lineages are discovered in North Africa, as has been the case recently (Lima et al., 2009). Our estimates of the timing of this event (Table 2) would be slightly younger, at between 2.3 and 2.69 Mya , depending on the calibration used, than previously inferred.

On the basis of the knowledge that the ancestor of P. vaucheri inhabited the Iberian Peninsula, we can therefore parsimoniously assume that the previous colonization event was carried out by the ancestor of clade E (which comprises all North African forms except P. vaucheri s.s.) also with a north-south polarity. According to our estimates, this colonization predates the opening of the Strait of Gibraltar (between 6.56 and 7.61 Mya depending on the calibration used), although 95% HPD limits include the end of the MSC at 5.33 Mya. This therefore suggests that the eventful geological history of the Betic-Rifean regions may have played an important role in shaping the diversity of these lizards, more than the opening of the current Strait itself.

Such a modification of the biogeographical scenario concerning the differentiation of P. vaucheri across the Strait of Gibraltar further influences both our knowledge on the evolutionary history of this species and more generalized biogeographical hypotheses proposed for the area. Specifically, an invasion of P. vaucheri to North Africa merely $2.3-2.69 \mathrm{Mya}$, as suggested by the present study, may further enhance our understanding of the high intra- and interpopulation genetic diversity that characterizes this species in the North African portion of its range (Pinho et al., 2007b). Previous analyses of population subdivision and historical demography indicated a coalescence time for Moroccan populations of P. vaucheri between 1 and 1.6 Mya (Pinho et al., 2007b) and suggested that the high diversity observed may be associated with the temporal isolation of distinct subpopulations during the warm-cold cycles during the Pleistocene (Zagwijn, 1992). New evidence supporting the colonization of North Africa by P. vaucheri at approximately 2.5 Mya, together with the presently known distribution of the species, which ranges from the Strait of Gibraltar eastwards to the Béjaïa province in Algeria and southwards to the south-eastern edge of the High Atlas mountains in Morocco (Fig. 2), may point to an additional mechanism of diversification, through the expansion of this species across Morocco and northern

Algeria. Additionally, such an invasion and expansion through North Africa by P. vaucheri may have also caused geographical fragmentation and isolation within other forms previously occupying this area, as suggested by the isolates of the Jbel Siroua and Azazga lineages (Fig. 2).

From a more global persepective, the modification of the biogeographical scenario concerning the colonization of North Africa by P. vaucheri may also alter our view concerning the role of connections between Iberia and North Africa as an agent shaping patterns of diversification. For example, in an analysis of intraversus intercontinental variation in most reptile species across the Strait, Busack \& Lawson (2008) reported low intracontinental variation relative to intercontinental variation in groups including Blanus, Timon, and P. vaucheri. However, recent studies have reported high mtDNA variation within Timon in the south-east Iberian Peninsula (Paulo et al., 2008) and North Africa (Perera \& Harris, 2010), and a new species of Blanus from south-west Iberia (Albert \& Fernández, 2009), which were not considered by Busack \& Lawson (2008). In the present study, we report an additional P. vaucheri mtDNA lineage, which, similar to the examples of Blanus and Timon, was not sampled and which greatly changes such assessments of variation across the Straits. It is clear, therefore, that extensive sampling is needed if such generalized biogeographical comparisons across the Strait of Gibraltar are going to be meaningful, especially when groups that are known to present high levels of cryptic diversity are involved.

CRyPTIC DIVERSITY IN SOUTH-EASTERN IBERIA

Although the colonization of North Africa by P. vaucheri may alter previous scenarios explaining patterns of diversity and historical distribution of this species, it appears that the opening of the Strait of Gibraltar has had a relatively secondary role considering the whole group of Iberian and North African Podarcis. By contrast, the area presently corresponding to the south-eastern corner of the Iberian Peninsula appears to be of major importance for the evolutionary history of the group, as already indicated by previous studies (Harris et al., 2002b; Pinho et al., 2006; Carretero, 2008). The discovery of a new lineage of P. hispanica in this area not only reinforces this view, but also augments the uncertainty related to the formulation of evolutionary scenarios. This area, approximately corresponding to the Spanish provinces of Jaén, Granada, Albacete, Murcia, Almería, and Alicante, hosts as many as six different Podarcis forms (omitting an introduced population of Moroccan P. vaucheri; Renoult et al., 2010b): P. vaucheri southern Spain, P. vaucheri southern-central

Spain, P. hispanica type 2, P. hispanica s.s. (sensu Pinho et al., 2006), P. hispanica Galera, and the newly-discovered P. hispanica from Albacete and Murcia (Figs 1, 2). The lineages of P. vaucheri appear to have diverged in southern Iberia at approximately 4.01 and 4.97 Mya (Table 2) and later invaded North Africa (see above). On the other hand, P. hispanica type 2 clearly belongs to the western Iberian clade that started to diversify between 6.37 or 8.03 Mya , depending on the calibration used (Table 2), and shows a geographical affinity with the central latitudes of the Iberian Peninsula, being delimited eastwards at the southern part of its range by the Segura mountains (Fig. 2), which emerged as a result of the contact between the Betic-Riffean and Iberian plates (Weijermars, 1991).

However, when examining the remaining lineages present in the area, inference is less straightforward, given that distributions are extremely patchy and lineage divergence quite deep. Two distantly-related clades are involved: one comprising P. liolepis and P. hispanica Galera, which constitute the sister clade to all other Iberian and North African Podarcis, and the other including P. hispanica s.s. (sensu Pinho et al., 2006) and the newly-discovered P. hispanica lineage, which together are sister taxa to all North African forms (Fig. 1). The evolutionary history of both clades can probably be traced back to the geological events that took place in the area that is now the Alborán sea and that eventually led to the MSC. The pair consisting of P. liolepis and P. hispanica Galera (clade N in Fig. 1) diverged, according to our estimates, at approximately 9.15 or 10.09 Mya (Table 2), depending on the calibration used, almost simultaneously to the formation of the other two major clades of the complex, corresponding to the western (clade L) and southern (clade H) groups. This period coincides with the opening of the Betic marine corridor and the fragmentation of the area today forming the Betic region (approximately 8-10 Mya: Weijermars, 1991; Rosembaum et al., 2002), which have also been suggested to have promoted the diversification of Salamandra (Steinfarz, Veith \& Tautz, 2000), Discoglossus (García-París \& Jockush, 1999; Fromhage, Vences \& Veith, 2004) and Alytes (Fromhage et al., 2004; Martínez-Solano et al., 2004) species. Further on, at approximately 6.56 or 7.61 Mya (Table 2), the split occurs between the pair consisting of Podarcis hispanica s.s. and the new lineage of P. hispanica (clade G) and the clade including P. vaucheri and all North African forms (clade F), during a period characterized by land connection and disconnection processes observed in what are today the Betic and Rif mountain ranges and caused by the deposition of sediments in these areas as a result of an increase in water salinity (Krijgsman et al., 2000; Krijgsman
\& Langereis, 2000). Podarcis hispanica s.s. and the new lineage of P. hispanica then diverge from each other at approximately 4.27 or 6.08 Mya (Table 2), just around the abrupt climatic modifications related to the closing of the Betic and Rif marine corridors, which triggered the Messinian salinity crisis at 5.96 Mya and the subsequent opening of the Strait of Gibraltar at 5.33 Mya (Hsü et al., 1977; Krijgsman et al., 1999; Duggen et al., 2003; Rouchy \& Caruso, 2006).
The geological events that took place in what is now the south-eastern corner of the Iberian Peninsula therefore appear to fairly coincide with the major phylogenetic splits involving the Podarcis forms that occupy this area at present. It is important, however, to notice that the patterns of distribution observed today in this area (Fig. 2) are quite inconsistent geographically and do not allow to assess in further detail the potential historical distributions of different lineages. Furthermore, it is likely that the climatic oscillations that occurred during the Pleistocene and post-glacial aridification of the climate have changed distribution patterns in the area, as appears to be the case with other members of this group (Pinho et al., 2007b; Pinho et al., 2011). These observations, together with the finding of an additional lineage of P. hispanica in the area, further question the systematic arrangement and evolutionary scenarios proposed for the forms that currently occur in the region.
Renoult et al. (2009) suggested that three evolutionary lineages could be identified in south-east Iberia using morphological characters and nuclear loci, whereas analysis of mtDNA data revealed four lineages. It was thus proposed that extensive past mtDNA introgression could explain this pattern; subsequently, specific status was formally attributed to P. liolepis (Renoult et al., 2010a), which would then correspond to two mtDNA lineages: the one treated in the present study as P. liolepis (filled pink triangles in Fig. 2) and the northern range of the lineage treated in the present study as P. hispanica s.s. (sensu Pinho et al., 2006; filled grey diamonds in Fig. 2). According to Renoult et al. 2009, P. hispanica s.s., which they refer to as P. hispanicus, and which is still considered as the nominal subspecies of the entire complex, would then include what is treated in the present study as P. hispanica Galera, and the southern range of the lineage treated in the present study as P. hispanica s.s. (Geniez et al., 2007; Renoult et al., 2009). The geographical break between these two species would then be located at the south-western part of the provinces of Valencia and Alicante (Renoult et al., 2009: fig. 2).
The newly-identified lineage of P. hispanica (open grey diamonds in Fig. 2) therefore further challenges
an already contrived scenario, by fully coinciding geographically with the presumed limit between the above mentioned taxa. Furthermore, a detailed analysis of morphological variation in all the mtDNA lineages of Podarcis shows that this area is characterized by extremely high levels of morphological variability that may be related to local adaptation (Kaliontzopoulou et al., in press). Additionally, it indicates a very high morphological similarity between the new P. hispanica lineage from south-east Iberia and P. hispanica Galera, whereas it also supports the morphological distinction between these two and P. hispanica s.s. and P. liolepis lineages (Kaliontzopoulou et al., in press). This new lineage remains to be analyzed in terms of its nuclear genome. Given the complex nature of genetic variation in the area, the fragmented sampling scheme used in previous studies and the contradictory results obtained by different studies both regarding genetic (Pinho et al., 2007a versus Pinho et al., 2008 versus Renoult et al., 2009) and morphological (Renoult et al., 2009 versus Kaliontzopoulou et al., in press) variation, further investigation is clearly necessary. Particularly, it appears premature to attempt to define formal taxonomic units in this area and to try to determine whether introgression occurs between them, or even if there are discrepancies between the number of lineages proposed using either morphological, mtDNA or nuclear datasets. Rather, still more geographical sampling is needed to determine how many lineages occur based on the different datasets, and only when this number has stabilized can concordance between them be determined and taxonomic revisions performed.

Conclusions

Iberian and North African Podarcis wall lizards are an example of a group with a complex evolutionary history that clearly illustrates how cryptic diversity may challenge biological inference. As new data become available, our understanding of the biogeography and evolutionary history of the group rapidly increases; in some cases confirming and in others rejecting previous conclusions. Clearly, the major phylogenetic groups of Podarcis now inhabiting the Iberomaghrebian region are quite older than initially considered (Harris et al., 2002b; Pinho et al., 2006) and their formation coincides with or predates the Messinian salinity crisis. An interesting biogeographical consequence deriving from this is that, unexpectedly for a group of Iberomaghrebian affinity, the Strait of Gibraltar does not appear to have played a major role in shaping diversity within the P. hispanica species complex. By contrast, the geological events that took place at the end of the Miocene in the
area now corresponding to south-eastern Iberia, the Rif mountain range in Morocco, and the north of Algeria (Rosembaum et al., 2002), followed by the abrupt climatic modifications observed during the Miocene/Pliocene transition (Jiménez-Moreno, Fauquette \& Suc, 2010), appear to have influenced the evolution of this group of lizards much more profoundly. Combining these paleobiogeographical scenarios with present distribution patterns and morphological evidence, it becomes clear that, without additional advances in the understanding of the phylogenetic history of this group, stable evolutionary hypotheses and systematic arrangements cannot be formulated. Future research concerning the evolution of this group still needs to evaluate genetic diversity based on nuclear markers to enhance our understanding of the biological potential of the mitochondrial lineages investigated in the present study; to explore present and past distribution patterns of those well supported lineages and relate them to environmental variation; to describe their ecological affinities and robustly infer how climatic oscillations may have shaped diversity across space; and, finally, to investigate the phenotypic variation to aid our comprehension of the potential role of local adaptation in shaping morphological patterns observed in this group of lizards.

ACKNOWLEDGEMENTS

We thank all the collaborators from CIBIO that participated in sampling campaigns or provided samples for this study. Special thanks are given to F. Ceacero, E. García-Muñoz, and L. Pedrajas for providing samples. R. Brown and an anonymous reviewer provided helpful comments for improving a previous version of the manuscript. We further thank Alexandra Lima and Susana Lopes for laboratory assistance and Sara Rocha for advice in data analyses. C.P. and A.K. are supported by postdoctoral grants (SFRH/ BPD/28869/2006 and SFRH_BPD/68493/2010, respectively), both from Fundação para a Ciência e Tecnologia (FCT, Portugal). Funding was provided by the projects PTDC/BIA-BDE/67678/2006, PTDC/BIABDE/74349/2006, PTDC/BIA-BEC/102179/2008, and PTDC/BIA-BEC/101256/2008 (also from FCT). Lizards were collected under scientific permits by Instituto para a Conservação da Natureza e da Biodiversidade (ICNB, Portugal), Agencia del Medio Ambiente de Andalucía (Spain), Consejería de Medio Ambiente y Desarrollo Rural de la Autonomía de Castilla-La Mancha (Spain), Dirección General del Medio Natural de la Consejería de Industria, Energía y Medio Ambiente de la Junta de Extremadura (Spain), Dirección General de Gestión del Medio Natural de la Consejería de Medio Ambiente de la

Junta de Castilla y León (Spain), Dirección General de Gestión del Medio Natural de la Generalitat Valenciana (Spain), Dirección General de Patrimonio Natural y Biodiversidad de la Consejería de Agricultura y Agua de la Junta de Murcia (Spain), and Le Haut Commissaire aux Eaux et Forets et a la Lutte Contre la Desertification (Morocco).

REFERENCES

Albert EM, Fernández A. 2009. Evidence of cryptic speciation in a fossorial reptile: description of a new species of Blanus (Squamata: Amphisbaenia: Blanidae) from the Iberian Peninsula. Zootaxa 2234: 56-68.
Arnold EN, Ovenden D. 2002. Reptiles and amphibians of Britain \& Europe. Hong Kong: HarperCollins Publishers.
Arntzen JW, Sá-Sousa P. 2007. Morphological and genetical differentiation of lizards (Podarcis bocagei and P. hispanica) in the Ria de Arosa archipelago (Galicia, Spain) resulting from vicariance and occasional dispersal. In: Renema W, ed. Biogeography, time, and place: distributions, barriers, and islands. Dordrecht: Springer, 365-401.
Beheregaray L, Caccone A. 2007. Cryptic diversity in a changing world. Journal of Biology 6: 9.
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winkler K, Ingram KK, Das I. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148-155.
Brown J, Lemmon A. 2007. The importance of data partitioning and the utility of Bayes factors in Bayesian phylogenetics. Systematic Biology 56: 643-655.
Brown RP, Terrasa B, Pérez-Mellado V, Castro JA, Hoskisson PA, Picornell A, Ramón MM. 2008. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Molecular Phylogenetics and Evolution 48: 350-358.
Busack SD. 1986. Biogeographic analysis of the herpetofauna separated by the formation of the Strait of Gibraltar. National Geographic Research 2: 17-36.
Busack SD, Lawson R. 2008. Morphological, mitochondrial DNA and allozyme evolution in representative amphibians and reptiles inhabiting each side of the Strait of Gibraltar. Biological Journal of the Linnean Society 94: 445-461.
Busack SD, Lawson R, Arjo WM. 2005. Mitochondrial DNA, allozymes, morphology and historical biogeography in the Podarcis vaucheri (Lacertidae) species complex. Amphibia-Reptilia 26: 239-256.
Camargo A, Sinervo B, Sites JW Jr. 2010. Lizards as model organisms for linking phylogeographic and speciation studies. Molecular Ecology 19: 3250-3270.
Carranza S, Arnold EN. 2004. History of West Mediterranean newts, Pleurodeles (Amphibia: Salamandridae) inferred from old and recent DNA sequences. Systematics and Biodiversity 1: 327-337.
Carranza S, Arnold EN, Amat F. 2004. DNA phylogeny of Lacerta (Iberolacerta) and other lacertinae lizards (Reptilia: Lacertidae): did competition cause long-term mountain restriction? Systematics and Biodiversity 2: 57-77.

Carranza S, Arnold EN, Pleguezuelos JM. 2006a. Phylogeny, biogeography and evolution of two Mediterranean snakes, Malpolon monspessulanus and Hemorrhois hippocrepis (Squamata, Colubridae), using mtDNA sequences. Molecular Phylogenetics and Evolution 40: 532-546.
Carranza S, Harris DJ, Arnold EN, Batista V, Gonzalez de la Vega JP. 2006b. Phylogeography of the lacertid lizard Psammodromus algirus, in Iberia and across the Strait of Gibraltar. Journal of Biogeography 33: 1279-1288.
Carretero MA. 2008. An integrated assessment of a group with complex systematics: the Iberomaghrebian lizard genus Podarcis (Squamata; Lacertidae). Integrative Zoology 4: 247-266.
Castilla AM, Fernández-Pedrosa V, Harris DJ, González A, Latorre A, Moya A. 1998a. Mitochondrial DNA divergence suggests that Podarcis hispanica atrata (Squamata: Lacertidae) from Columbretes islands merits specific distinction. Copeia 1998: 1037-1040.
Castilla AM, Fernández-Pedrosa V, Backeljau T, González A, Latorre A, Moya A. 1998b. Conservation genetics of insular Podarcis lizards using partial cytochrome b sequences. Molecular Ecology 7: 1407-1411.
Drummond A, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Drummond A, Ho S, Phillips M, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: 699.
Duggen S, Hoernle K, van den Bogaard P, Rüpke L, Morgan JP. 2003. Deep roots of the Messinian salinity crisis. Nature 422: 602-606.
Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368-376.
Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.
Fonseca MM, Brito JC, Paulo OS, Carretero MA, Harris DJ. 2009. Systematic and phylogeographical assessment of the Acanthodactylus erythrurus group (Reptilia: Lacertidae) based on phylogenetic analyses of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution 51: 131-142.
Fromhage L, Vences M, Veith M. 2004. Testing alternative vicariance scenarios in Western Mediterranean discoglossid frogs. Molecular Phylogenetics and Evolution 31: 308-322.
Galtier N, Nabholz B, Glemin S, Hurst G. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18: 4541-4550.
García-Castellanos D, Estrada F, Jiménez-Munt I, Gorini C, Fernández M, Vergés J, De Vicente R. 2009. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462: 778-781.
García-París M, Jockush EL. 1999. A mitochondrial DNA perspective on the evolution of Iberian Discoglossus (Amphibia: Anura). Journal of Zoology, London 248: 209218.

Geniez P, Cluchier A, Sá-Sousa P, Guillame CP, Crochet PA. 2007. Systematics of the Podarcis hispanicus-complex (Sauria, Lacertidar) I: redefinition, morphology and
distribution of the nominotypical taxon. Herpetological Journal 17: 69-80.
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95-98.
Harris DJ. 2002. Reassessment of comparative genetic distance in reptiles from the mitochondrial cytochrome b gene. Herpetological Journal 12: 85-87.
Harris DJ, Arnold EN. 1999. Relationships of wall lizards, Podarcis (Reptilia: Lacertidae) based on mitochondrial DNA sequences. Copeia 1999: 749-754.
Harris DJ, Sá-Sousa P. 2001. Species distinction and relationships of the Western Iberian Podarcis lizards (Reptilia, Lacertidae) based on morphology and mitochondrial DNA sequences. Herpetological Journal 11: 129-136.
Harris DJ, Sá-Sousa P. 2002. Molecular phylogenetics of Iberian wall lizards (Podarcis): is Podarcis hispanica a species complex? Molecular Phylogenetics and Evolution 23: 75-81.
Harris DJ, Batista V, Carretero MA, Pinho C, Sá-Sousa P. 2002a. Mitochondrial DNA sequence data confirms the presence of Podarcis carbonelli, Pérez-Mellado, 1981 in southern Spain. Herpetozoa 15: 188-190.
Harris DJ, Carranza S, Arnold EN, Pinho C, Ferrand N. 2002b. Complex biogeographical distribution of genetic variation within Podarcis wall lizards across the Strait of Gibraltar. Journal of Biogeography 29: 1257-1262.
Hsü KJ, Montadert L, Bernoulli D, Cita MB, Erickson A, Garrison RE, Kidd RB, Mèlierés F, Müller C, Wright R. 1977. History of the Mediterranean salinity crisis. Nature 267: 399-403.
Huelsenbeck J, Ronquist F. 2001. MrBayes: a program for the Bayesian inference of phylogeny. Bioinformatics 17: 754-755.
Jiménez-Moreno G, Fauquette S, Suc JP. 2010. Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Review of Paleobotany and Palinology 162: 403-415.
Kaliontzopoulou A, Carretero MA, Llorente GA. in press. Morphology of Podarcis wall lizards (Reptilia: Lacertidae) from the Iberian Peninsula and North Africa: patterns of variation in a putative cryptic species complex. Zoological Journal of the Linnean Society. DOI: 10.1111/ j.1096-3642.2011.00760.x.

Kidd D, Ritchie M. 2006. Phylogeographic information systems: putting geography into phylogeography. Journal of Biogeography 33: 1851-1865.
Krijgsman W, Langereis CG. 2000. Magnetostratigraphy of the Zobzit and Koudiat Zarga sections (Taza-Guercif basin, Morocco): implications for the evolution of the Rifian Corridor. Marine and Petroleum Geology 17: 359-371.
Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652-655.
Krijgsman W, Garcés M, Agustí J, Raffi I, Taberner C, Zachariasse WJ. 2000. The 'Tortonian salinity crisis' of the Eastern Betics (Spain). Earth and Planetary Science Letters 181: 497-511.

Lima A, Pinho C, Larbes S, Carretero MA, Brito JC, Harris DJ. 2009. Relationships of Podarcis wall lizards from Algeria based on mtDNA data. Amphibia-Reptilia 30: 483-492.
Lymberakis P, Poulakakis N, Kaliontzopoulou A, Valakos E, Mylonas M. 2008. Two new species of Podarcis (Squamata; Lacertidae) from Greece. Systematics and Biodiversity 6: 307-318.
Martínez-Solano I, Gonçalves H, Arntzen JW, GarcíaParís M. 2004. Phylogenetic relationships and biogeography of midwife toads (Discoglossidae: Alytes). Journal of Biogeography 31: 603-618.
Nylander J, Wilgenbusch J, Warren D, Swofford D. 2008. AWTY(are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581.
Oliverio M, Bologna M, Mariottini P. 2000. Molecular biogeography of the Mediterranean lizards Podarcis Wagler, 1830 and Teira Gray, 1838 (Reptilia, Lacertidae). Journal of Biogeography 27: 1403-1420.
Paulo OS, Pinheiro J, Miraldo A, Bruford MW, Jordan WC, Nichols RA. 2008. The role of vicariance vs. dispersal in shaping genetic patterns in ocellated lizard species in the western Mediterranean. Molecular Ecology 17: 1535-1551.
Perera A, Harris DJ. 2010. Genetic variability in the ocellated lizard Timon tingitanus in Morocco. African Zoology 45: 321-329.
Pinho C, Harris DJ, Ferrand N. 2003. Genetic polymorphism of 11 allozyme loci in populations of wall lizards (Podarcis sp.) from the Iberian Peninsula and North Africa. Biochemical Genetics 41: 343-359.
Pinho C, Ferrand N, Harris DJ. 2006. Reexamination of the Iberian and North African Podarcis (Squamata: Lacertidae) phylogeny based on increased mitochondrial DNA sequencing. Molecular Phylogenetics and Evolution 38: 266-273.
Pinho C, Harris DJ, Ferrand N. 2007a. Comparing patterns of nuclear and mitochondrial divergence in a cryptic species complex: the case of Iberian and North African wall lizards (Podarcis, Lacertidae). Biological Journal of the Linnean Society 91: 121-133.
Pinho C, Harris DJ, Ferrand N. 2007b. Contrasting patterns of population subdivision and historical demography in three western Mediterranean lizard species inferred from mitochondrial DNA variation. Molecular Ecology 16: 11911205.

Pinho C, Harris DJ, Ferrand N. 2008. Non-equilibrium estimates of gene flow inferred from nuclear genealogies suggest that Iberian and North African wall lizards (Podarcis spp.) are an assemblage of incipient species. BMC Evolutionary Biology 8: 63.
Pinho C, Kaliontzopoulou A, Harris DJ, Ferrand N. 2011. Recent evolutionary history of the Iberian endemic lizards Podarcis bocagei (Seoane, 1884) and Podarcis carbonelli Pérez-Mellado, 1981 (Squamata: Lacertidae) revealed by allozyme and microsatellite markers. Zoological Journal of the Linnean Society 162: 184-200.
Podnar M, Haring E, Pinsker W, Mayer W. 2007. Unusual origin of a nuclear pseudogene in the Italian wall lizard:
intergenomic and interspecific transfer of a large section of the mitochondrial genome in the genus Podarcis (Lacertidae). Journal of Molecular Evolution 64: 308-320.
Posada D, Crandall KA. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
Poulakakis N, Lymberakis P, Valakos E, Pafilis P, Zouros E, Mylonas M. 2005. Phylogeography of Balkan wall lizard (Podarcis taurica) and its relatives inferred from mitochondrial DNA sequences. Molecular Ecology 14: 24332443.

Rambaut A, Drummond AJ. 2007. Tracer, version 1.4. Available at: http://tree.bio.ed.ac.uk/software/tracer
Renoult J. 2006. Histoire évolutive du Lézard ibérique Podarcis hispanicus (Squamata: Lacertidae): discordances entre morphologie, ADN nucléaire et ADN mitochondrial. MSc Thesis, Université Montpellier II Sciences et Techniques du Languedoc.
Renoult JP, Geniez P, Bacquet P, Benoit L, Crochet PA. 2009. Morphology and nuclear markers reveal extensive mitochondrial introgressions in the Iberian wall lizard species complex. Molecular Ecology 18: 4298-4315.
Renoult JP, Geniez P, Bacquet P, Guillame CP, Crochet PA. 2010a. Systematics of the Podarcis hispanicus-complex (Sauria, Lacertidae) II: the valid name of the north-eastern Spanish form. Zootaxa 2500: 58-68.
Renoult JP, Geniez P, Beddek M, Crochet PA. 2010b. An isolated population of Podarcis vaucheri (Sauria: Lacertidae) in south-eastern Spain: genetic data suggest human-mediated range expansion. Amphibia-Reptilia 31: 287-293.
Rosembaum G, Lister GS, Duboz C. 2002. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 8: 107130.

Rouchy JM, Caruso A. 2006. The Messinian salinity crisis in the Mediterranean basin: a reassessment of the data and an integrated scenario. Sedimentary Geology 188/189: 35-67.
Sáez A, Lozano E. 2005. Body doubles. Nature 433: 111.
Saitou N, Nei M. 1987. The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-427.
Sanz-Azkue I, García-Etxebarria K, Gosá A, Rubio X, Jugo BM. 2006. Phylogenetic description of the Iberian wall lizard (Podarcis hispanica) in Donostia-San Sebastián and neighbouring populations. IX Congresso Luso-Espanhol, XXIII Congreso Español de Herpetología, San Sebastián.
Sá-Sousa P, Harris DJ. 2002. Podarcis carbonelli PérezMellado, 1981 is a distinct species. Amphibia-Reptilia 23: 459-468.
Scotland R, Olmstead R, Bennett J. 2003. Phylogeny reconstruction: the role of morphology. Systematic Biology 52: 539-548.
Steinfarz S, Veith M, Tautz D. 2000. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of Central Europe from distinct source populations of Salamandra salamandra. Molecular Ecology 9: 397-410.

Swofford DL. 2002. PAUP* ver. 4.0.b10. Phylogenetic analysis using parsimony and other methods. Sunderland, MA: Sinauer Associates.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596.
Weijermars R. 1991. Geology and tectonics of the Betic Zone, SE Spain. Earth-Science Reviews 31: 153-236.
Wiens JJ. 2007. Species delimitation: new approaches for discovering diversity. Systematic Biology 56: 875878.

Wiens JJ, Donoghue MJ. 2004. Historical biogeography, ecology and species richness. Trends in Ecology and Evolution 19: 639-644.
Wiens JJ, Servedio M. 2000. Species delimitation in systematics: inferring diagnostic differences between species.

Proceedings of the Royal Society of London Series B, Biological Sciences 267: 631-636.
Wilgenbusch J, Warren D, Swofford D. 2004. AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available at: http:// www.ceb.csit.fsu.edu/awty
Zagwijn WH. 1992. The beginning of the ice age in Europe and its major subdivisions. Quaternary Science Reviews 11: 583-591.
Zhang DX, Hewitt GM. 2003. Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology 12: 563-584.
Zwickl D. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas at Austin.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:
Table S1. GenBank accession numbers of the sequences used for molecular clock calibration.
Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

[^0]: *Corresponding author. E-mail: antigoni@mail.icav.up.pt
 \dagger These authors contributed equally to this work.

[^1]: *Denotes previously published sequences (Lima et al., 2009).
 Lineages: PB, Podarcis bocagei; PC, Podarcis carbonelli; PH1A, Podarcis hispanica type 1A; PH1B, P. hispanica type 1B; PH2, P. hispanica type 2; PHAM, P. hispanica Albacete/Murcia; PHAza, P. hispanica Azazga; PHBat, P. hispanica Batna; PHGal, P. hispanica Galera; PHJS, P. hispanica Jbel Siroua; PHSS, P. hispanica s.s.; PHTA, P. hispanica Tunisia/north-east Algeria; PL, Podarcis liolepis; PVMA, Podarcis vaucheri Morocco/Algeria; PVSCSp, P. vaucheri southern-central Spain; PVSSp, P. vaucheri southern Spain. For the phylogenetic position and geographical distribution of each lineage, see Figs 1, 2. ND4, NADH dehydrogenase subunit 4 .

